344 research outputs found

    An XMM-Newton Observation of the Local Bubble Using a Shadowing Filament in the Southern Galactic Hemisphere

    Get PDF
    We present an analysis of the X-ray spectrum of the Local Bubble, obtained by simultaneously analyzing spectra from two XMM-Newton pointings on and off an absorbing filament in the Southern galactic hemisphere (b ~ -45 deg). We use the difference in the Galactic column density in these two directions to deduce the contributions of the unabsorbed foreground emission due to the Local Bubble, and the absorbed emission from the Galactic halo and the extragalactic background. We find the Local Bubble emission is consistent with emission from a plasma in collisional ionization equilibrium with a temperature log⁡TLB=6.06−0.04+0.02\log T_{LB} = 6.06^{+0.02}_{-0.04} and an emission measure of 0.018 cm^{-6} pc. Our measured temperature is in good agreement with values obtained from ROSAT All-Sky Survey data, but is lower than that measured by other recent XMM-Newton observations of the Local Bubble, which find log⁡TLB≈6.2\log T_{LB} \approx 6.2 (although for some of these observations it is possible that the foreground emission is contaminated by non-Local Bubble emission from Loop I). The higher temperature observed towards other directions is inconsistent with our data, when combined with a FUSE measurement of the Galactic halo O VI intensity. This therefore suggests that the Local Bubble is thermally anisotropic. Our data are unable to rule out a non-equilibrium model in which the plasma is underionized. However, an overionized recombining plasma model, while observationally acceptable for certain densities and temperatures, generally gives an implausibly young age for the Local Bubble (\la 6 \times 10^5 yr).Comment: Accepted for publication in the Astrophysical Journal. 16 pages, 9 figure

    Bandpass Dependence of X-ray Temperatures in Galaxy Clusters

    Full text link
    We explore the band dependence of the inferred X-ray temperature of the intracluster medium (ICM) for 192 well-observed galaxy clusters selected from the Chandra Data Archive. If the hot ICM is nearly isothermal in the projected region of interest, the X-ray temperature inferred from a broad-band (0.7-7.0 keV) spectrum should be identical to the X-ray temperature inferred from a hard-band (2.0-7.0 keV) spectrum. However, if unresolved cool lumps of gas are contributing soft X-ray emission, the temperature of a best-fit single-component thermal model will be cooler for the broad-band spectrum than for the hard-band spectrum. Using this difference as a diagnostic, the ratio of best-fitting hard-band and broad-band temperatures may indicate the presence of cooler gas even when the X-ray spectrum itself may not have sufficient signal-to-noise to resolve multiple temperature components. To test this possible diagnostic, we extract X-ray spectra from core-excised annular regions for each cluster in our archival sample. We compare the X-ray temperatures inferred from single-temperature fits when the energy range of the fit is 0.7-7.0 keV (broad) and when the energy range is 2.0/(1+z)-7.0 keV (hard). We find that the hard-band temperature is significantly higher, on average, than the broad-band temperature. Upon further exploration, we find this temperature ratio is enhanced preferentially for clusters which are known merging systems. In addition, cool-core clusters tend to have best-fit hard-band temperatures that are in closer agreement with their best-fit broad-band temperatures. We show, using simulated spectra, that this diagnostic is sensitive to secondary cool components (TX = 0.5-3.0 keV) with emission measures >10-30% of the primary hot component.Comment: Accepted for publication in Ap

    Shocks and sonic booms in the intracluster medium: X-ray shells and radio galaxy activity

    Get PDF
    Motivated by hydrodynamic simulations, we discuss the X-ray appearance of radio galaxies embedded in the intracluster medium (ICM) of a galaxy cluster. We distinguish three regimes. In the early life of a powerful source, the entire radio cocoon is expanding supersonically and hence drives a strong shock into the ICM. Eventually, the sides of the cocoon become subsonic and the ICM is disturbed by the sonic booms of the jet's working surface. In both of these regimes, X-ray observations would find an X-ray shell. In the strong shock regime, this shell will be hot and relatively thin. However, in the weak shock (sonic-boom) regime, the shell will be approximately the same temperature as the undisturbed ICM. If a cooling flow is present, the observed shell may even be cooler than the undisturbed ICM due to the lifting of cooler material into the shell from the inner (cooler) regions of the cluster. In the third and final regime, the cocoon has collapsed and no well-defined X-ray shell will be seen. We discuss ways of estimating the power and age of the source once its regime of behavior has been determined.Comment: 4 pages, submitted for publication in Astrophysical Journal. Full paper (including figure) can be obtained from http://rocinante.Colorado.EDU/~chris/papers/xray_hydro.p

    Chandra Observations of ULIRGs: Extended Hot Gas Halos in Merging Galaxies

    Full text link
    We study the properties of hot gaseous halos in 10 nearby ultraluminous IRAS galaxies observed with the ACIS instrument on board Chandra. For all sample galaxies, diffuse soft X-ray emissions are found within ~10 kpc of the central region; their spectra are well fitted by a MEKAL model plus emission lines from alpha-elements and other ions. The temperature of the hot gas is about 0.7 keV and metallicity is about 1 solar. Outside the central region, extended hot gaseous halos are found for nine out of the ten ULIRGs. Most spectra of these extended halos can be fitted with a MEKAL model with a temperature of about 0.6 keV and a low metallicity (~ 0.1 solar). We discuss the implications of our results on the origin of X-ray halos in elliptical galaxies and the feedback processes associated with starbursts.Comment: 31 pages, 6 figuers, ApJ in press, accepted versio

    X-MAS2: Study Systematics on the ICM Metallicity Measurements

    Full text link
    (Abridged)The X-ray measurements of the ICM metallicity are becoming more frequent due to the availability of powerful X-ray telescope with excellent spatial and spectral resolutions. The information which can be extracted from the measurements of the alpha-elements, like Oxygen, Magnesium and Silicon with respect to the Iron abundance is extremely important to better understand the stellar formation and its evolutionary history. In this paper we investigate possible source of bias connected to the plasma physics when recovering metal abundances from X-ray spectra. To do this we analyze 6 simulated galaxy clusters processed through the new version of our X-ray MAp Simulator, which allows to create mock XMM-Newton EPIC MOS1 and MOS2 observations. By comparing the spectroscopic results to the input values we find that: i) Fe is recovered with high accuracy for both hot (T>3 keV) and cold (T<2 keV) systems; at intermediate temperatures, however, we find a systematic overestimate which depends on the number counts; ii) O is well recovered in cold clusters, while in hot systems its measure may overestimate by a factor up to 2-3; iii) Being a weak line, the measurement of Mg is always difficult; despite of this, for cold systems (T<2 keV) we do not find any systematic behavior, while for very hot systems (T>5 keV) the spectroscopic measurement may be strongly overestimated up to a factor of 4; iv) Si is well recovered for all the clusters in our sample. We investigate in detail the nature of the systematic effects and biases found. We conclude that they are mainly connected with the multi-temperature nature of the projected observed spectra and to the intrinsic limitation of the XMM-Newton EPIC spectral resolution that does not always allow to disentangle among the emission lines produced by different elements.Comment: (e.g.: 17 pages, 8 figures, accepted for publication in the Astrophysical Journal, updated discussion to match published version-new section:6.3

    AGN heating and dissipative processes in galaxy clusters

    Full text link
    Recent X-ray observations reveal growing evidence for heating by active galactic nuclei (AGN) in clusters and groups of galaxies. AGN outflows play a crucial role in explaining the riddle of cooling flows and the entropy problem in clusters. Here we study the effect of AGN on the intra-cluster medium in a cosmological simulation using the adaptive mesh refinement FLASH code. We pay particular attention to the effects of conductivity and viscosity on the dissipation of weak shocks generated by the AGN activity in a realistic galaxy cluster. Our 3D simulations demonstrate that both viscous and conductive dissipation play an important role in distributing the mechanical energy injected by the AGN, offsetting radiative cooling and injecting entropy to the gas. These processes are important even when the transport coefficients are at a level of 10% of the Spitzer value. Provided that both conductivity and viscosity are suppressed by a comparable amount, conductive dissipation is likely to dominate over viscous dissipation. Nevertheless, viscous effects may still affect the dynamics of the gas and contribute a significant amount of dissipation compared to radiative cooling. We also present synthetic Chandra observations. We show that the simulated buoyant bubbles inflated by the AGN, and weak shocks associated with them, are detectable with the Chandra observatory.Comment: accepted to ApJ, minor change

    X-ray Properties of the Abell 644 Cluster of Galaxies

    Get PDF
    We use new ASCA observations and archival ROSAT Position Sensitive Proportional Counter (PSPC) data to determine the X-ray spectral properties of the intracluster gas in Abell 644. From the overall spectrum, we determine the average gas temperature to be 8.64 (+0.67,-0.56) keV, and an abundance of 0.32 (+/-0.04) Z⊙Z_{\odot}. The global ASCA and ROSAT spectra imply a cooling rate of 214 (+100,-91) M⊙M_{\odot} yr−1^{-1}. The PSPC X-ray surface brightness profile and the ASCA data suggest a somewhat higher cooling rate. We determine the gravitational mass and gas mass as a function of radius. The total gravitating mass within 1.2 Mpc is 6.2×10146.2\times10^{14} M⊙M_{\odot}, of which 20% is in the form of hot gas. There is a region of elevated temperature 1.5-5 arcmin to the west of the cluster center. The south-southwest region of the cluster also shows excess emission in the ROSAT PSPC X-ray image, aligned with the major axis of the optical cD galaxy in the center of the cluster. We argue that the cluster is undergoing or has recently undergone a minor merger. The combination of a fairly strong cooling flow and evidence for a merger make this cluster an interesting case to test the disruption of cooling flow in mergers.Comment: 26 pages LaTeX including 9 eps figures + 4 pages LaTeX tables (landscape); accepted to ApJ, uses aaspp

    An X-ray Mini-survey of Nearby Edge-on Starburst Galaxies II. The Question of Metal Abundance

    Get PDF
    (abbreviated) We have undertaken an X-ray survey of a far-infrared flux limited sample of seven nearby edge-on starburst galaxies. Here, we examine the two X-ray-brightest sample members NGC 253 and M 82 in a self-consistent manner, taking account of the spatial distribution of the X-ray emission in choosing our spectral models. There is significant X-ray absorption in the disk of NGC 253. When this is accounted for we find that multi-temperature thermal plasma models with significant underlying soft X-ray absorption are more consistent with the imaging data than single-temperature models with highly subsolar abundances or models with minimal absorption and non-equilibrium thermal ionization conditions. Our models do not require absolute abundances that are inconsistent with solar values or unusually supersolar ratios of the alpha-burning elements with respect to Fe (as claimed previously). We conclude that with current data, the technique of measuring abundances in starburst galaxies via X-ray spectral modeling is highly uncertain. Based on the point-like nature of much of the X-ray emission in the PSPC hard-band image of NGC 253, we suggest that a significant fraction of the ``extended'' X-ray emission in the 3-10 keV band seen along the disk of the galaxy with ASCA and BeppoSAX (Cappi et al.) is comprised of discrete sources in the disk, as opposed to purely diffuse, hot gas. This could explain the low Fe abundances of ~1/4 solar derived for pure thermal models.Comment: (accepted for publication in the Astrophysical Journal

    X-Atlas: An Online Archive of Chandra's Stellar High Energy Transmission Gratings Observations

    Full text link
    The high-resolution X-ray spectroscopy made possible by the 1999 deployment of the Chandra X-ray Observatory has revolutionized our understanding of stellar X-ray emission. Many puzzles remain, though, particularly regarding the mechanisms of X-ray emission from OB stars. Although numerous individual stars have been observed in high-resolution, realizing the full scientific potential of these observations will necessitate studying the high-resolution Chandra dataset as a whole. To facilitate the rapid comparison and characterization of stellar spectra, we have compiled a uniformly processed database of all stars observed with the Chandra High Energy Transmission Grating (HETG). This database, known as X-Atlas, is accessible through a web interface with searching, data retrieval, and interactive plotting capabilities. For each target, X-Atlas also features predictions of the low-resolution ACIS spectra convolved from the HETG data for comparison with stellar sources in archival ACIS images. Preliminary analyses of the hardness ratios, quantiles, and spectral fits derived from the predicted ACIS spectra reveal systematic differences between the high-mass and low-mass stars in the atlas and offer evidence for at least two distinct classes of high-mass stars. A high degree of X-ray variability is also seen in both high and low-mass stars, including Capella, long thought to exhibit minimal variability. X-Atlas contains over 130 observations of approximately 25 high-mass stars and 40 low-mass stars and will be updated as additional stellar HETG observations become public. The atlas has recently expanded to non-stellar point sources, and Low Energy Transmission Grating (LETG) observations are currently being added as well
    • 

    corecore