6 research outputs found

    Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter

    Full text link
    Background: Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules from 'leaky’ immunological synapses and non-confined release by CD8+ T cells themselves during serial and simultaneous killing of oligodendrocytes or astrocytes. Methods: Wild-type and T cell receptor transgenic CD8+ T cells were stimulated in vitro, their activation status was assessed by flow cytometry, and supernatant glutamate levels were determined using an enzymatic assay. Expression regulation of molecules involved in vesicular glutamate release was examined by quantitative real-time PCR, and mechanisms of non-vesicular glutamate release were studied by pharmacological blocking experiments. The impact of CD8+ T cell-mediated glutamate liberation on neuronal viability was studied in acute brain slice preparations. Results: Following T cell receptor stimulation, CD8+ T cells acquire the molecular repertoire for vesicular glutamate release: (i) they upregulate expression of glutaminase required to generate glutamate via deamination of glutamine and (ii) they upregulate expression of vesicular proton-ATPase and vesicular glutamate transporters required for filling of vesicles with glutamate. Subsequently, CD8+ T cells release glutamate in a strictly stimulus-dependent manner. Upon repetitive T cell receptor stimulation, CD25high CD8+ T effector cells exhibit higher estimated single cell glutamate release rates than CD25low CD8+ T memory cells. Moreover, glutamate liberation by oligodendrocyte-reactive CD25high CD8+ T effector cells is capable of eliciting collateral excitotoxic cell death of neurons (despite glutamate re-uptake by glia cells and neurons) in intact CNS gray matter. Conclusion: Glutamate release may represent a crucial effector pathway of neural-antigen reactive CD8+ T cells, contributing to excitotoxicity in CNS inflammation.<br

    Cytotoxic CD8+ T cell-neuron interactions: perforin-dependent electrical silencing precedes but is not causally linked to neuronal cell death

    Get PDF
    Cytotoxic CD8(+) T cells are considered important effector cells contributing to neuronal damage in inflammatory and degenerative CNS disorders. Using time-lapse video microscopy and two-photon imaging in combination with whole-cell patch-clamp recordings, we here show that major histocompatibility class I (MHC I)-restricted neuronal antigen presentation and T cell receptor specificity determine CD8(+) T-cell locomotion and neuronal damage in culture and hippocampal brain slices. Two separate functional consequences result from a direct cell-cell contact between antigen-presenting neurons and antigen-specific CD8(+) T cells. (1) An immediate impairment of electrical signaling in single neurons and neuronal networks occurs as a result of massive shunting of the membrane capacitance after insertion of channel-forming perforin (and probably activation of other transmembrane conductances), which is paralleled by an increase of intracellular Ca(2+) levels (within <10 min). (2) Antigen-dependent neuronal apoptosis may occur independently of perforin and members of the granzyme B cluster (within approximately 1 h), suggesting that extracellular effects can substitute for intracellular delivery of granzymes by perforin. Thus, electrical silencing is an immediate consequence of MHC I-restricted interaction of CD8(+) T cells with neurons. This mechanism is clearly perforin-dependent and precedes, but is not causally linked, to neuronal cell death

    Development of a Core Set Questionnaire by the European Society of Cutaneous Lupus Erythematosus (EUSCLE)

    No full text
    A study group of the European Society of Cutaneous Lupus Erythematosus (EUSCLE) developed a Core Set Questionnaire for the evaluation of patients with cutaneous lupus erythematosus (CLE). The aim of the EUSCLE Core Set Questionnaire is to gain a broad and comparable data collection of patients with CLE from different European centers, to achieve consensus concerning evidence-based clinical standards for disease assessment, and to develop diagnostic and therapeutic guidelines. The authors designed the EUSCLE Core Set Questionnaire by including parameters considered most relevant for the evaluation of CLE and compiled from international literature, clinical praxis, and long-term experience with this disease. The compilation of the different parameters for the evaluation of CLE resulted in the 4-sided EUSCLE Core Set Questionnaire with six sections on patient data, diagnosis, skin involvement, activity and damage of disease, laboratory analysis, and treatment. Thus, the EUSCLE Core Set Questionnaire for CLE constitutes a useful tool for the collection and evaluation of epidemiological data from patients with this disease. It enables consistent statistical evaluation, exchange, and comparison of patient's data within several European countries and provides a set of guidelines for standardized diagnostic and therapeutic strategies in CLE. \ua9 2009 Elsevier B.V. All rights reserved

    Introduction to Molecular Combing: Genomics, DNA Replication, and Cancer

    No full text
    corecore