1,081 research outputs found
Neutrino-Nucleus Quasi-Elastic Scattering in a Relativistic Model
A relativistic distorted-wave impulse-approximation model is applied to
neutral-current and charged-current quasi-elastic neutrino-nucleus scattering.
The effects of final state interactions are investigated and the sensitivity of
the results to the strange nucleon form factors is discussed in view of their
possible experimental determinationComment: 7 pages, 3 figures Proc. of the XXV International Workshop on Nuclear
Theory, 26 June- 1 July, 2006 Rila, Bulgari
Inclusive electron scattering in a relativistic Green function approach
A relativistic Green function approach to the inclusive quasielastic (e,e')
scattering is presented. The single particle Green function is expanded in
terms of the eigenfunctions of the nonhermitian optical potential. This allows
one to treat final state interactions consistently in the inclusive and in the
exclusive reactions. Numerical results for the response functions and the cross
sections for different target nuclei and in a wide range of kinematics are
presented and discussed in comparison with experimental data.Comment: 12 pages, 7 figures, REVTeX
Electron-induced proton knockout from neutron rich nuclei
We study the evolution of the \eep cross section on nuclei with increasing
asymmetry between the number of neutrons and protons. The calculations are done
within the framework of the nonrelativistic and relativistic distorted-wave
impulse approximation. In the nonrelativistic model phenomenological
Woods-Saxon and Hartree-Fock wave functions are used for the proton bound-state
wave functions, in the relativistic model the wave functions are solutions of
Dirac-Hartree equations. The models are first tested against experimental data
on Ca and Ca nuclei, and then they are applied to a set of
spherical calcium isotopes.Comment: 5 pages, 2 figures. contribution to the XIX International School on
Nuclear Physics, Neutron Physics and Applications, Varna (Bulgaria) September
19-25, 201
Ad- and desorption of Rb atoms on a gold nanofilm measured by surface plasmon polaritons
Hybrid quantum systems made of cold atoms near nanostructured surfaces are
expected to open up new opportunities for the construction of quantum sensors
and for quantum information. For the design of such tailored quantum systems
the interaction of alkali atoms with dielectric and metallic surfaces is
crucial and required to be understood in detail. Here, we present real-time
measurements of the adsorption and desorption of Rubidium atoms on gold
nanofilms. Surface plasmon polaritons (SPP) are excited at the gold surface and
detected in a phase sensitive way. From the temporal change of the SPP phase
the Rubidium coverage of the gold film is deduced with a sensitivity of better
than 0.3 % of a monolayer. By comparing the experimental data with a Langmuir
type adsorption model we obtain the thermal desorption rate and the sticking
probability. In addition, also laser-induced desorption is observed and
quantified.Comment: 9 pages, 6 figure
Power-laws in recurrence networks from dynamical systems
Recurrence networks are a novel tool of nonlinear time series analysis
allowing the characterisation of higher-order geometric properties of complex
dynamical systems based on recurrences in phase space, which are a fundamental
concept in classical mechanics. In this Letter, we demonstrate that recurrence
networks obtained from various deterministic model systems as well as
experimental data naturally display power-law degree distributions with scaling
exponents that can be derived exclusively from the systems' invariant
densities. For one-dimensional maps, we show analytically that is not
related to the fractal dimension. For continuous systems, we find two distinct
types of behaviour: power-laws with an exponent depending on a
suitable notion of local dimension, and such with fixed .Comment: 6 pages, 7 figure
Mean-field calculations of exotic nuclei ground states
We study the predictions of three mean-field theoretical approaches in the
description of the ground state properties of some spherical nuclei far from
the stability line. We compare binding energies, single particle spectra,
density distributions, charge and neutron radii obtained with non-relativistic
Hartree-Fock calculations carried out with both zero and finite-range
interactions, and with a relativistic Hartree approach which uses a
finite-range interaction. The agreement between the results obtained with the
three different approaches indicates that these results are more related to the
basic hypotheses of the mean-field approach rather than to its implementation
in actual calculations.Comment: 16 pages, 12 figures, 2 tables, accepted for publication in Physical
Review
- …