80 research outputs found

    Holstein model in infinite dimensions at half-filling

    Full text link
    The normal state of the Holstein model is studied at half-filling in infinite dimensions and in the adiabatic regime. The dynamical mean-field equations are solved using perturbation expansions around the extremal paths of the effective action for the atoms. We find that the Migdal-Eliashberg expansion breaks down in the metallic state if the electron-phonon coupling λ\lambda exceeds a value of about 1.3 in spite of the fact that the formal expansion parameter λω0/EF\lambda \omega_0/E_F (ω0\omega_0 is the phonon frequency, EFE_F the Fermi energy) is much smaller than 1. The breakdown is due to the appearance of more than one extremal path of the action. We present numerical results which illustrate in detail the evolution of the local Green's function, the self-energy and the effective atomic potential as a function of λ\lambda.Comment: Revtex + 17 postscript figures include

    On the magnetic stability at the surface in strongly correlated electron systems

    Full text link
    The stability of ferromagnetism at the surface at finite temperatures is investigated within the strongly correlated Hubbard model on a semi-infinite lattice. Due to the reduced surface coordination number the effective Coulomb correlation is enhanced at the surface compared to the bulk. Therefore, within the well-known Stoner-picture of band ferromagnetism one would expect the magnetic stability at the surface to be enhanced as well. However, by taking electron correlations into account well beyond the Hartree-Fock (Stoner) level we find the opposite behavior: As a function of temperature the magnetization of the surface layer decreases faster than in the bulk. By varying the hopping integral within the surface layer this behavior becomes even more pronounced. A reduced hopping integral at the surface tends to destabilize surface ferromagnetism whereas the magnetic stability gets enhanced by an increased hopping integral. This behavior represents a pure correlation effect and can be understood in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction.Comment: 6 pages, RevTeX, 4 eps figures, accepted (Phys. Rev. B), for related work and info see http://orion.physik.hu-berlin.d

    Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films

    Full text link
    The influence of uncorrelated (nonmagnetic) overlayers on the magnetic properties of thin itinerant-electron films is investigated within the single-band Hubbard model. The Coulomb correlation between the electrons in the ferromagnetic layers is treated by using the spectral density approach (SDA). It is found that the presence of nonmagnetic layers has a strong effect on the magnetic properties of thin films. The Curie temperatures of very thin films are modified by the uncorrelated overlayers. The quasiparticle density of states is used to analyze the results. In addition, the coupling between the ferromagnetic layers and the nonmagnetic layers is discussed in detail. The coupling depends on the band occupation of the nonmagnetic layers, while it is almost independent of the number of the nonmagnetic layers. The induced polarization in the nonmagnetic layers shows a long-range decreasing oscillatory behavior and it depends on the coupling between ferromagnetic and nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see: http://orion.physik.hu-berlin.d
    corecore