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1. Introduction 

The  purpose of this paper is to call attention  to a newly discovered diffusional process 
which could be of importance in understanding  the physiological processes involving 
the  transport of macromolecules or of any  species  associated with transporting 
macromolecules.  Maerker (1973)  and  Desremaux et a1 (1971) have discovered  that 
macromolecules dissolved in a flowing fluid may be  concentrated by the flow process in 
heterogeneous  porous  media. A further  detailed  experimental verification of this 
phenomenon has been  described by Dominguez  and Willhite (1977).  It  appears  that 
the  concentration  changes  depend  upon  the  type of macromolecules involved and  the 
flow rate in the main  stream of the moving fluids. A thermodynamic analysis of the 
Chauveteau-Maerker effect has been  published by Metzner  (1977). This analysis 
depends  upon  the observation  that in a moving, deforming fluid dissolved macromole- 
cules will become  aligned  and  stretched,  thus  changing  their  entropy  and  free  energy 
levels. In any flow process in which the stress  or  strain rate levels vary with position 
within the fluid, the molecular  orientation  and  extension,  and  consequently  the  free 
energy, will also vary with position.  In order  for  the  free energy,  at  steady state,  to 
become  independent of position,  compensating  concentration  gradients will be 
induced.  The net  result of these  processes will be  to  cause the macromolecules  to 
diffuse toward  regions of low stress level-toward any  ‘deadwater’  regions  behind 
obstructions or in fenestra.  Independently,  Terrill  and  Malone  (1977)  applied similar 
considerations  to the identification of radial  concentration  gradients within the flowing 
stream itself. 

2. Theory 

To illustrate how the Chauveteau-Maerker effect with its flow-induced concentration 
differences may relate  to physiology, let us consider the  structure of the  endothelial 
layers in a typical arterial wall. Three kinds of structures, which, for  our  purposes may 
be considered to be cavities within the wall of the  endothelium can  be  distinguished 
(Majno  and  Joris  (1978), Middleman (1972),  Weinbaum  and  Car0  (1976)):  inter- 
cellular  channels, void spaces and  the cavioles which are  precursors  to vesicules (figure 
1). As the  arterial bloodstream flows past  any of these  structures,  macromolecular 
species in the flowing stream will diffuse into  these wall cavities; the  experimental 
i Permanent address:  Laboratory  for Physical Technology, Delft University of Technology, 2628 BW Delft, 
The Netherlands. 
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Figure 1. Endothelial  wall  with  cavities: A: intercellular  channels; B: void  spaces; C: cavioles; D: vesicules. 

results of Maerker  and of Dominguez  and Willhite  show that  the  concentration levels in 
these  cavities  may  exceed  those in the  mainstream by an  appreciable  margin.  The 
subsequent  uptake of these  species  into  the  remainder of the  intima will, of course,  be 
dependent  on  the  concentration levels  within  these  cavities.  Additionally, the possible 
existence of 'backwater'  stagnant  zones in the valleys between  the  endothelial  folds has 
been  suggested by Chisolm et a1 (1972); these  would  likewise produce  stagnant  or 
semistagnant fluid regions of high concentration. 

At  thermodynamic  equilibrium  between  the flowing fluid and  that  located in a wall 
cavity or  stagnant fluid region the  concentrations of macromolecular  species in the two 
regions are  related by (Metzner  1977) 

cwc/cs = exp(tr  P/2csRT). 

Here cwc  denotes  the  concentration of a given macromolecular  species in the wall cavity 
or in a  stagnant  backwater  region; cs denotes  the  concentration of the  same species in 
the  adjacent flowing stream;  R  and T are  the universal gas constant  and  the  absolute 
temperature.  The  term  tr  P  denotes  the  trace of the  stress  tensor  and is a  measure of the 
stretch of the  macromolecules in the flowing stream.  It is this term which gives rise to  an 
entropy difference between  macromolecules in the flowing and  deforming fluid and 
those in any  adjacent  stagnant fluid in which the  macromolecules would  assume  their 
more  or less random coil configuration  (figure 2). 

Figure 2. Stretched  and  coiled  molecules in the  endothelial  system. 

If the blood  rheology is described by a Maxwell-Oldroyd  constitutive equation 
(Janssen  and  Janssen-van  Rosmalen  (1978),  White  and  Metzner  (1963))  the  term  tr  P is 
given by 

tr P = 2Fer2  (2) 

in which p denotes  the viscosity of the  blood  at  the  shearing  rate  and 0 is the 



Macromolecular  thermodynamics  in  physiology 345 

viscoelastic  time constant  contributed by the  macromolecular  species in question. 
Combining  equations (1) and (2) and  linearising the exponential  (an  operation  expected 
to  be valid for  the  modest  concentration  changes likely in physiological  systems)  gives: 

cwc = cs+  ( p e r 2 / R T ) .  

The use of this  equation is particularly  convenient  since  the viscosity ( p )  and  the 
viscoelastic  time constant ( e )  are directly  measurable  standard  quantities. 

This  equation  states  that  the  macromolecular  species in question will be present in 
wall cavities at  concentration levels  exceeding  those in the flowing stream by an amount 
depending on the rheological properties of the fluid (p ,  e )  and  the  square of the local 
shear  rate r. This  predicted  concentration excess will presumably  influence  the 
diffusional  transport of these  molecular  species  from  the wall cavities  into other  parts of 
the  endothelium, including the cells themselves. In fact, in the case of synthetic  polymer 
solutions  for  which  data  are  available,  the  second  term on the  right-hand side of 
equation (3) may be  appreciably  larger  than  the first. Speculatively, it is attractive  to 
attribute  the origin of the  free  cholesterol  ester  and of the  cholesterol  monohydrate in 
atherosclerotic  plaque  to  such  concentration excesses, but  there is no firm basis for 
doing so at  present.  Nevertheless,  Carew  (1971)  and Fry (1973)  report  that in in vitro 
experiments  the  uptake of albumin by the  artherial wall at higher  stress  ranges  varies 
with the  square of the  shear  stress  (or  shear  rate).  This  identity of the  dependence  as 
predicted by equation (3) and  found  experimentally is very  striking. 

In order  for  equation (3) to  be  related  to  the physiological transport,  at  least  some of 
the  macromolecular  species involved  must be  capable of deformation,  stretching  or 
alignment in the flowing bloodstream,  thus giving rise to  a viscoelastic  response ( e ) .  
Deformation of lipoproteins by shearing  forces,  although  mentioned  (Moacanin et a1 
1970), has  evidently  not  been  measured  directly.  The viscoelastic properties of blood, 
although  normally  too small to  measure  under  steady  state  conditions  (Copley  and King 
(1975)),  have,  however,  been  measured in unsteady  state  experiments,  (Chien et a1 
(1975))  and  appear  to  be of sufficient magnitude  for  the last term of equation (3) to  be 
significant.  Additionally,  the  presence of fibrinogen  has been shown to  be closely linked 
to  the viscoelastic properties of the  blood  (Merril et a1 (1969)).  The  polymerisation of 
fibrin in a  shear field has  recently  been  reported by Clark  (1978)  and is very similar to 
the  entropy-induced crystallisation of synthetic  polymers  reported by Zwijnenburg  and 
Pennings  (1975,  1976),  McHugh  (1975)  and by Janssen  and  Janssen-van  Rosmalen 
(1978).  Thus  the  migration of some of the  macromolecular  components  of  blood 
towards  ‘backwater’  regions  may  be  expected,  and  fibrinogen will be one  of  the species 
involved in this  process.  Since we are  dealing with  very slow processes in physiology 
and possibly  with some species  having  limited  solubility,  even  a  minor concentration 
excess (equation 3) may be  quite significant. 

At  the  intima on arterial flow dividers,  where  the  stress levels  may be very  high, 
however,  the diffusion is not  expected  to  be significant. Equation (3) is an  equilibrium 
relationship.  Flow  for  a  period of the  magnitude  of  the fluid  relaxation  time e is 
required  for  the  macromolecular  stretch, which is the basis  of equation  (l),  to occur. 
Thus,  a fluid element having  velocity U will be  transported  downstream  a  distance 
before  the  entropy  changes  and  hence  the  concentration  changes  predicted will occur 
fully. In other  words,  because of the  memory  effects in the fluid  (expressed in the  time 
constant e )  in a  velocity field in which the  hydrodynamic  stress levels  vary  strongly  with 
position, we would  expect  maximum  concentration  differences  to  occur slightly down- 
stream  from  the  position of the  maximum  stress level. 
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3. Concluding  comments 

This  paper  presents a  hypothesis  for the diffusion of macromolecules which has  the 
following  characteristics. It indicates that diffusion should  occur under  conditions of 
high haemodynamic  stress or  shear  rate,  that  the  subsequent  concentration differences 
should vary quadratically with shear  rate in steady flow and  that a  region of length ut9 
downstream  from  a flow divider will be relatively  unaffected.  This  mechanism  focuses 
attention on the possibly important  role of fibrinogen and of other  macromolecular 
species which can  undergo  large  extensions in the  shear field. 

To review,  the  underlying physical basis of the  concentration  differences  predicted 
by equation (3) is  in the possibility of stretching  the species by fluid shear. In the 
absence of any  such  stretch the last term of equation (3) would  be  zero  and the 
concentration in a wall cavity would  be  identical to  that in the bulk of the fluid. 
Reference  to  Maerker (1975), Desremaux eta1 (1971), Dominguez  and  Willhite (1977) 
and  Metzner (1977) will show that  the  predicted  concentration differences are  inferred 
from  macroscopic measurements of the  retention of macromolecules in porous  media 
of complex  internal  geometry.  Direct  measurements with synthetic  polymers  (Metzner 
et a1 1978, Rangel-Nafaile 1979) give significant concentration  changes of the  order of 
magritude  predicted by equation (3). Until  this is established more precisely,  however, 
equations (1)  and (3) should  be viewed as  being  generally  indicative rather  than as 
precise,  quantitatively verified predictions. 

The concentration  changes given by these  relations  are  believed  to  apply  generally 
to all inhomogeneous flows of viscoelastic fluids, i.e. to all flows of these fluids in which 
there is a  stress  gradient. As such  they may influence diffusional processes rather 
generally in physiological systems. 

Acknowledgment 

We have  been  assisted by useful  comments  made by K B Bischoff, C K Colton,  J  L 
Gainer, E W  Merrill  and  R  C Wagner,  The  Netherlands  Organization  for  the 
Advancement of Pure  Research  (ZWO)  has  supported  the fellowship of one  of us (LJ) 
at  Delaware. 

References 

Carew  T E 1971 PhD Thesis, The Catholic University of America, Washington DC 
Chien S, King R G, Skalak R, Usami S and Copley A L 1975 Biorheology 12 341-6 
Chisolm G M, Gainer J L Stonder  G E and Gainer  J V Jr  1972 Atherosclerosis 15 327-43 
Clark  H G 1978 Chem.  Eng.  News 56 March 20, p 24 
Copley A L and King R  G 1975 Biorheology 12 5-10 
Desremaux L, Chauveteau G and Martin  M 1971 Colloque  de  L’association  de recherches sur les techniques 

d’exploitation du  pitrole,  communication 28 (Znstitut Francais du  Pitrole,  Rueil-Mahaison, F-90502, 
France) Ref.  19226 

Dominguez  J G and Willhite G P 1977 in Improved Oil Recovery  by  Surfactant  and  Polymer  Flooding ed D 0 
Shah and R S Schechter (New York: Academic) 

Fry D L 1973 in Atherogenesis:  Initiating  Factors,  Ciba  Fdn  Symp. 12 93-125 
Janssen L P B M  and  Janssen-van  Rosmalen  R 1978 Rheol.  Acta 17 578-88 
McHugh A  J 1975 J. Appl .  Poly.  Sci. 19 125-40 
Maerker  J M 1973 J. Pet.  Tech. 25 1307-8 
Majno G and Joris I 1978 in The  Thrombotic Process in Atherogenesis ed A B Chandler,  K  Eurenius and G C 

McMillan (New York: Plenum) 



Macromolecular thermodynamics in  physiology 347 

Merrill E W, Meiselman H J, Gilliland E R, Sherwood T K and Salzman E W 1969 in Ciba Foundation 
Symposium on Circulatory and Respiratory Mass Transport ed G E W  Wolstenholme  and J Knight 
(London: J and A  Churchill) pp 130-1 

Metzner A B 1977 in Improved  Oil  Recovery by Surfactant  and Polymer Flooding ed D 0 Shah and R S 
Schechter (New York: Academic) 

Metzner  A  B,  Cohen Y, Rangel-Nafaile  C 1978 in Proc. IUTAMSymposium on Non-Newtonian Fluid 
Mechanics ed M J Crochet  (Louvain-la-neuve (B):  IUTAM) 

Middleman S 1972 Transport Phenomena in the Cardiovascular System (New York: Wiley-Interscience) 
Moacanin J, Dawson D D, Chin H P, Harrison E C  and  Blankenhorn  D  H 1970 Biomater.  Med.  Devices & 

Rangel-Nafaile C,  1979 PhD Thesis University of Delaware (in preparation) 
Terrill M and Malone  M F 1977 J. Poly. Sci. 15 1569-83 
Weinbaum S and  Car0 G  G 1976 J. Fluid Mech. 74 61  1-40 
White J L and Metzner  A  B 1963 J. Appl. Poly. Sci. 7 1867-89 
Zwijnenburg  A  and Pennings A J 1975 Cull. & Poly. Sci. 253 452-461 
- 1976 Coll. & Poly. Sci. 254 868-81 

Artif.  Organs 1 183-90 


