6,203 research outputs found
A Definitive Optical Detection of a Supercluster at z = 0.91
We present the results from a multi-band optical imaging program which has
definitively confirmed the existence of a supercluster at z = 0.91. Two massive
clusters of galaxies, CL1604+4304 at z = 0.897 and CL1604+4321 at z = 0.924,
were originally observed in the high-redshift cluster survey of Oke, Postman &
Lubin (1998). They are separated by 4300 km/s in radial velocity and 17
arcminutes on the plane of the sky. Their physical and redshift proximity
suggested a promising supercluster candidate. Deep BRi imaging of the region
between the two clusters indicates a large population of red galaxies. This
population forms a tight, red sequence in the color--magnitude diagram at (R-i)
= 1.4. The characteristic color is identical to that of the
spectroscopically-confirmed early-type galaxies in the two member clusters. The
red galaxies are spread throughout the 5 Mpc region between CL1604+4304 and
CL1604+4321. Their spatial distribution delineates the entire large scale
structure with high concentrations at the cluster centers. In addition, we
detect a significant overdensity of red galaxies directly between CL1604+4304
and CL1604+4321 which is the signature of a third, rich cluster associated with
this system. The strong sequence of red galaxies and their spatial distribution
clearly indicate that we have discovered a supercluster at z = 0.91.Comment: Accepted for publication in Astrophysical Journal Letters. 13 pages,
including 5 figure
Jet array impingement with crossflow-correlation of streamwise resolved flow and heat transfer distributions
Correlations for heat transfer coefficients for jets of circular offices and impinging on a surface parallel to the jet orifice plate are presented. The air, following impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer (impingement) surface. The downstream jets are subjected to a crossflow originating from the upstream jets. Impingement surface heat transfer coefficients resolved to one streamwise jet orifice spacing, averaged across the channel span, are correlated with the associated individual spanwise orifice row jet and crossflow velocities, and with the geometric parameters
Extending an Effective Classroom-Based Math Board Game Intervention to Preschoolers’ Homes
The preschool years are a critical time for math development. Unfortunately, children from low-income backgrounds often enter kindergarten with lower math skills than middle-income peers, perhaps due to less math exposure at home. Few home-based math interventions are available for preschool age children; those that do exist are costly and difficult to implement. Interventions conducted in children’s schools using linear numeric board games developed by researchers have been particularly successful with low-income preschool children. Researchers have suggested they may be adapted for home-use by using commercially available board games, such as Chutes and Ladders, and teaching parents how to play. The two studies described in this paper explored the effectiveness of using Chutes and Ladders with a specialized counting procedure with Head Start families. Implementation proved to be challenging and children did not improve as much as in previous classroom-based interventions
Multiple jet impingement heat transfer characteristic: Experimental investigation of in-line and staggered arrays with crossflow
Heat transfer characteristics were obtained for configurations designed to model the impingement cooled midchord region of air cooled gas turbine airfoils. The configurations tested were inline and staggered two-dimensional arrays of circular jets with ten spanwise rows of holes. The cooling air was constrained to exit in the chordwise direction along the channel formed by the jet orifice plate and the heat transfer surface. Tests were run for chordwise jet hole spacings of five, ten, and fifteen hole diameters; spanwise spacings of four, six, and eight diameters; and channel heights of one, two, three, and six diameters. Mean jet Reynolds numbers ranged from 5000 to 50,000. The thermal boundary condition at the heat transfer test surface was isothermal. Tests were run for sets of geometrically similar configurations of different sizes. Mean and chordwise resolved Nusselt numbers were determined utilizing a specially constructed test surface which was segmented in the chordwise direction
Blowup of Jang's equation at outermost marginally trapped surfaces
The aim of this paper is to collect some facts about the blowup of Jang's
equation. First, we discuss how to construct solutions that blow up at an
outermost MOTS. Second, we exclude the possibility that there are extra blowup
surfaces in data sets with non-positive mean curvature. Then we investigate the
rate of convergence of the blowup to a cylinder near a strictly stable MOTS and
show exponential convergence near a strictly stable MOTS.Comment: 15 pages. This revision corrects some typo
A Search for Distant Galactic Cepheids Toward l=60
We present results of a survey of a 6-square-degree region near l=60, b=0 to
search for distant Milky Way Cepheids. Few MW Cepheids are known at distances
>~ R_0, limiting large-scale MW disk models derived from Cepheid kinematics;
this work was designed to find a sample of distant Cepheids for use in such
models. The survey was conducted in the V and I bands over 8 epochs, to a
limiting I~=18, with a total of ~ 5 million photometric observations of ~ 1
million stars. We present a catalog of 578 high-amplitude variables discovered
in this field. Cepheid candidates were selected from this catalog on the basis
of variability and color change, and observed again the following season. We
confirm 10 of these candidates as Cepheids with periods from 4 to 8 days, most
at distances > 3 kpc. Many of the Cepheids are heavily reddened by intervening
dust, some with implied extinction A_V > 10 mag. With a future addition of
infrared photometry and radial velocities, these stars alone can provide a
constraint on R_0 to 8%, and in conjunction with other known Cepheids should
provide good estimates of the global disk potential ellipticity.Comment: 18 pages, 4 tables, 13 figures (LaTeX / AASTeX
The relationship between Hippocampal asymmetry and working memory processing in combat-related PTSD: a monozygotic twin study
BACKGROUND: PTSD is associated with reduction in hippocampal volume and abnormalities in hippocampal function. Hippocampal asymmetry has received less attention, but potentially could indicate lateralised differences in vulnerability to trauma. The P300 event-related potential component reflects the immediate processing of significant environmental stimuli and has generators in several brain regions including the hippocampus. P300 amplitude is generally reduced in people with PTSD. METHODS: Our study examined hippocampal volume asymmetry and the relationship between hippocampal asymmetry and P300 amplitude in male monozygotic twins discordant for Vietnam combat exposure. Lateralised hippocampal volume and P300 data were obtained from 70 male participants, of whom 12 had PTSD. We were able to compare (1) combat veterans with current PTSD; (2) their non-combat-exposed co-twins; (3) combat veterans without current PTSD and (4) their non-combat-exposed co-twins. RESULTS: There were no significant differences between groups in hippocampal asymmetry. There were no group differences in performance of an auditory oddball target detection task or in P300 amplitude. There was a significant positive correlation between P300 amplitude and the magnitude of hippocampal asymmetry in participants with PTSD. CONCLUSIONS: These findings suggest that greater hippocampal asymmetry in PTSD is associated with a need to allocate more attentional resources when processing significant environmental stimuli.Timothy Hall, Cherrie Galletly, C.R. Clark, Melinda Veltmeyer, Linda J. Metzger, Mark W. Gilbertson, Scott P. Orr, Roger K. Pitman and Alexander McFarlan
The SBF Survey of Galaxy Distances. I. Sample Selection, Photometric Calibration, and the Hubble Constant
We describe a program of surface brightness fluctuation (SBF) measurements
for determining galaxy distances. This paper presents the photometric
calibration of our sample and of SBF in general. Basing our zero point on
observations of Cepheid variable stars, we find that the absolute SBF magnitude
in the Kron-Cousins I band correlates well with the mean (V-I)o color of a
galaxy according to
M_Ibar = (-1.74 +/- 0.07) + (4.5 +/- 0.25) [ (V-I)o - 1.15 ]
for 1.0 < (V-I) < 1.3. This agrees well with theoretical estimates from
stellar population models. Comparisons between SBF distances and a variety of
other estimators, including Cepheid variable stars, the Planetary Nebula
Luminosity Function (PNLF), Tully-Fisher (TF), Dn-sigma, SNII, and SNIa,
demonstrate that the calibration of SBF is universally valid and that SBF error
estimates are accurate. The zero point given by Cepheids, PNLF, TF (both
calibrated using Cepheids), and SNII is in units of Mpc; the zero point given
by TF (referenced to a distant frame), Dn-sigma and SNIa is in terms of a
Hubble expansion velocity expressed in km/s. Tying together these two zero
points yields a Hubble constant of H_0 = 81 +/- 6 km/s/Mpc. As part of this
analysis, we present SBF distances to 12 nearby groups of galaxies where
Cepheids, SNII, and SNIa have been observed.Comment: 29 pages plus 8 figures; LaTeX (AASTeX) uses aaspp4.sty (included);
To appear in The Astrophysical Journal, 1997 February 1 issue; Compressed
PostScript available from ftp://mars.tuc.noao.edu/sbf
- …