494 research outputs found
Crosslinking of elongation factor Tu to tRNAPhe by trans-diamminedichloroplatinum (II) Characterization of two crosslinking sites on EF-Tu
AbstractIn a preceding paper [(1987) Nucleic Acids Res. 15, 5787–5801], we have used trans-diamminedichloroplatinum (II) to induce reversible RNA-protein crosslinks within the ternary EF-Tu/GTP/Phe-tRNAPhe complex and have identified two crosslinking sites on the tRNA. The aim of the present paper is to determine the crosslinking sites on EF-Tu. Two tryptic peptides located in domain I could be identified, a major one (residues 45–74) and a minor one (residues 117–154). The use of Staphylococcus aureus V8 protease led to the isolation of two major peptides (residues 56–68 and 64–68) and one minor peptide (118–124). These results are discussed in the light of the current knowledge of the topography of the EF-Tu/tRNA complex
Seasonality of reproduction in an ever-wet lowland tropical forest in Amazonian Ecuador
We thank Pablo Alvia, Alvaro Pérez, Zornitza Aguilar, Paola Barriga, Matt Priest, Caroline Whitefoord, and Gorky Villa for assistance in collecting data or identifying species; Elina Gomez for entry of trap data; Hugo Navarrete, Katya Romoleroux and the QCA herbarium staff, and David Lasso and the ECY staff for help with logistics and needed permitting; Rick Condit, Elizabeth Losos, Robin Foster, and Henrik Balslev for initial encouragement to work within the Yasuní Forest Dynamics Plot; Hugo Romero for initially summarizing the YFDP and SSP weather data sets; Pablo Jarrin for setting up the TEAM weather station, and David Lasso and Carlos Padilla for maintaining that equipment and making the data available; and the Ecuadorian Ministerio del Ambiente for permission to work in Yasuní National Park [No 014-2019-IC-PNY-DPAO/AVS, No 012-2018-IC-PNY593-DPAO/AVS, No 008-2017-IC-PNY-DPAO/AVS, No 012-2016-IC-FAU-FLO-DPAO-PNY, No 594-014-2015-FLO-MAE-DPAO-PNY, and earlier permits]. The Forest Dynamics Plot of Yasuní National Park has been made possible through the generous support of the Pontifical Catholic University of Ecuador (PUCE) funds of donaciones del impuesto a la renta, the Government of Ecuador, the US National Science Foundation, the Andrew W. Mellon Foundation, the Smithsonian Tropical Research Institute, and the University of Aarhus of Denmark. The phenology project began while NCG was at the Natural History Museum, London, with funding (2000–2004) from the Department of Botany (NHM), the Andrew W. Mellon Foundation, British Airways, and the Natural Environment Research Council (GR9/04037). It continued with NCG at Southern Illinois University Carbondale (2005–2023). We thank the Center for Tropical Forest Science for transitional funding (2006–2008, 2017–2018) and the National Science Foundation LTREB program for long-term funding (2006–2020; DEB-0614525, DEB-1122634, DEB-1754632, DEB-1754668).Peer reviewedPublisher PD
Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: Marker candidates for dementia with Lewy bodies
Background: The measurement of biomarkers in cerebrospinal fluid (CSF) has gained increasing acceptance in establishing the diagnosis of some neurodegenerative diseases. Heart-type fatty acid-binding protein (H-FABP) was recently discovered in CSF and serum of patients with neurodegenerative diseases. Objective: We investigated H-FABP in CSF and serum alone and in combination with CSF tau protein to evaluate these as potential biomarkers for the differentiation between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). Methods: We established H-FABP and tau protein values in a set of 144 persons with DLB (n = 33), Parkinson disease with dementia (PDD; n = 25), AD (n = 35) and nonclemented neurological controls (NNC; n = 51). Additionally, serum H-FABP levels were analyzed in idiopathic Parkinson disease patients without evidence of cognitive decline (n = 45) using commercially available enzyme-linked immunosorbent assays. We calculated absolute values of HFABP and tau protein in CSF and serum and established relative ratios between the two to obtain the best possible match for the clinical working diagnosis. Results: Serum HFABP levels were elevated in DLB and PDD patients compared with NNC and AD subjects. To better discriminate between DLB and AD, we calculated the ratio of serum H-FABP to CSF tau protein levels. At the arbitrary chosen cutoff ratio >= 8 this quotient reached a sensitivity of 91% and a specificity of 66%. Conclusion: Our results suggest that the measurement of CSF tau protein, together with H-FABP quantification in serum and CSF, and the ratio of serum H-FABP to CSF tau protein represent marker candidates for the differentiation between AD and DLB. Copyright (c) 2007 S. Karger AG, Basel
Project Vestia: Future of Martian Habitats
Project Vestia’s main goal is to design and test a floor for inflatable habitat modules (IHM) in Martian or Lunar environments. Currently, there is no method for creating a stable floor in an IHM that does not inhibit the benefits of using that module, as there is for a hard shell habitat. The scope of this project is to: design and simulate three designs; manufacture and test scale models of the top two performing models; design, manufacture, and test different hinge constructions. Each final scale model must withstand 1668.2 N of downwardly applied force, a scaled down representation of what could be typical use modified to account for difference in gravitational pull. Three folding designs were created with Fusion 360 computer modeling software, and simulation was performed using ANSYS software. The hinges used in each model are all of one design but multiple different construction methods. Hinges were manufactured using each method, and then were subsequently tested to determine each method’s tensile strength and flexibility. The parts are all manufactured and tested by the student researchers in house, with materials obtained externally. Preliminary results show that with current design methodology, all models have a minimum factor of safety of 1.5 at the weakest point, compared to at least 5 across the rest of each design. The end goal of this project is to confirm a design and create a scale model of the best design with the best hinge construction method and publish the findings to encourage further research and apply this technology in future IHMs
Spatial distribution and habitat preferences of demersal fish assemblages in the southeastern Weddell Sea (Southern Ocean)
Our knowledge on distribution, habitats and behavior of Southern Ocean fishes living at water depths beyond scuba-diving limits is still sparse, as it is difficult to obtain quantitative data on these aspects of their biology. Here, we report the results of an analysis of seabed images to investigate species composition, behavior, spatial distribution and preferred habitats of demersal fish assemblages in the southern Weddell Sea. Our study was based on a total of 2736 high-resolution images, covering a total seabed area of 11,317 m2, which were taken at 13 stations at water depths between 200 and 750 m. Fish were found in 380 images. A total of 379 notothenioid specimens were recorded, representing four families (Nototheniidae, Artedidraconidae, Bathydraconidae, Channichthyidae), 17 genera and 25 species. Nototheniidae was the most speciose fam- ily, including benthic species (Trematomus spp.) and the pelagic species Pleuragramma antarctica, which was occasionally recorded in dense shoals. Bathydraconids ranked second with six species, followed by artedidraconids and channichthyids, both with five species. Most abundant species were Trematomus scotti and T. lepidorhinus among nototheniids, and Dol- loidraco longedorsalis and Pagetopsis maculatus among artedidraconids and channichthyids, respectively. Both T. lepi- dorhinus and P. maculatus preferred seabed habitats characterized by biogenous debris and rich epibenthic fauna, whereas T. scotti and D. longedorsalis were frequently seen resting on fine sediments and scattered gravel. Several fish species were recorded to make use of the three-dimensional structure formed by epibenthic foundation species, like sponges, for perching or hiding inside. Nesting behavior was observed, frequently in association with dropstones, in species from various families, including Channichthyidae (Chaenodraco wilsoni and Pagetopsis macropterus) and Bathydraconidae (Cygnodraco mawsoni)
Iron Labeling and Pre-Clinical MRI Visualization of Therapeutic Human Neural Stem Cells in a Murine Glioma Model
Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs) to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA) approval.For human use, the characteristics of therapeutic Neural Stem Cells must be clearly defined with any pertubation to the cell including iron labeling requiring reanalysis of cellular physiology. Here, we studied the effect of iron-loading of the therapeutic NSCs, with ferumoxide-protamine sulfate complex (FE-Pro) on viability, proliferation, migratory properties and transgene expression, when compared to non-labeled cells. FE-Pro labeled NSCs were imaged by MRI at tumor sites, after intracranial administration into the hemisphere contralateral to the tumor, in an orthotopic human glioma xenograft mouse model.FE-Pro labeled NSCs retain their proliferative status, tumor tropism, and maintain stem cell character, while allowing in vivo cellular MRI tracking at 7 Tesla, to monitor their real-time migration and distribution at brain tumor sites. Of significance, this work directly supports the use of FE-Pro-labeled NSCs for real-time tracking in the clinical trial under development: "A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically modified Neural Stem Cells Expressing Escherichia coli Cytosine Deaminase for Treatment of Recurrent High-Grade Gliomas"
Neural Stem Cells as a Novel Platform for Tumor-Specific Delivery of Therapeutic Antibodies
Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS). Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs) can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors., and can deliver antibodies to human breast cancer xenografts in mice.Taken together, these results suggest that NSCs modified to secrete HER2-targeting antibodies constitute a promising novel platform for targeted cancer immunotherapy. Specifically, this NSC-mediated antibody delivery system has the potential to significantly improve clinical outcome for patients with HER2-overexpressing breast cancer
Endogenous Morphine Levels Are Increased in Sepsis: A Partial Implication of Neutrophils
BACKGROUND: Mammalian cells synthesize morphine and the respective biosynthetic pathway has been elucidated. Human neutrophils release this alkaloid into the media after exposure to morphine precursors. However, the exact role of endogenous morphine in inflammatory processes remains unclear. We postulate that morphine is released during infection and can be determined in the serum of patients with severe infection such as sepsis. METHODOLOGY: The presence and subcellular immunolocalization of endogenous morphine was investigated by ELISA, mass spectrometry analysis and laser confocal microscopy. Neutrophils were activated with Interleukin-8 (IL-8) or lipopolysaccharide (LPS). Morphine secretion was determined by a morphine-specific ELISA. mu opioid receptor expression was assessed with flow cytometry. Serum morphine concentrations of septic patients were determined with a morphine-specific ELISA and morphine identity was confirmed in human neutrophils and serum of septic patients by mass spectrometry analysis. The effects of the concentration of morphine found in serum of septic patients on LPS-induced release of IL-8 by human neutrophils were tested. PRINCIPAL FINDINGS: We confirmed the presence of morphine in human neutrophil extracts and showed its colocalisation with lactoferrin within the secondary granules of neutrophils. Morphine secretion was quantified in the supernatant of activated human polymorphonuclear neutrophils in the presence and absence of Ca(2+). LPS and IL-8 were able to induce a significant release of morphine only in presence of Ca(2+). LPS treatment increased mu opioid receptor expression on neutrophils. Low concentration of morphine (8 nM) significantly inhibited the release of IL-8 from neutrophils when coincubated with LPS. This effect was reversed by naloxone. Patients with sepsis, severe sepsis and septic shock had significant higher circulating morphine levels compared to patients with systemic inflammatory response syndrome and healthy controls. Mass spectrometry analysis showed that endogenous morphine from serum of patient with sepsis was identical to poppy-derived morphine. CONCLUSIONS: Our results indicate that morphine concentrations are increased significantly in the serum of patients with systemic infection and that morphine is, at least in part, secreted from neutrophils during sepsis. Morphine concentrations equivalent to those found in the serum of septic patients significantly inhibited LPS-induced IL-8 secretion in neutrophils
- …