6,104 research outputs found

    Atomic cluster state build up with macroscopic heralding

    Full text link
    We describe a measurement-based state preparation scheme for the efficient build up of cluster states in atom-cavity systems. As in a recent proposal for the generation of maximally entangled atom pairs [Metz et al., Phys. Rev. Lett. 97, 040503 (2006)], we use an electron shelving technique to avoid the necessity for the detection of single photons. Instead, the successful fusion of smaller into larger clusters is heralded by an easy-to-detect macroscopic fluorescence signal. High fidelities are achieved even in the vicinity of the bad cavity limit and are essentially independent of the concrete size of the system parameters.Comment: 14 pages, 12 figures; minor changes, mainly clarification

    Macroscopic quantum jumps and entangled state preparation

    Get PDF
    Recently we predicted a random blinking, i.e. macroscopic quantum jumps, in the fluorescence of a laser-driven atom-cavity system [Metz et al., Phys. Rev. Lett. 97, 040503 (2006)]. Here we analyse the dynamics underlying this effect in detail and show its robustness against parameter fluctuations. Whenever the fluorescence of the system stops, a macroscopic dark period occurs and the atoms are shelved in a maximally entangled ground state. The described setup can therefore be used for the controlled generation of entanglement. Finite photon detector efficiencies do not affect the success rate of the state preparation, which is triggered upon the observation of a macroscopic fluorescence signal. High fidelities can be achieved even in the vicinity of the bad cavity limit due to the inherent role of dissipation in the jump process.Comment: 14 pages, 12 figures, proof of the robustness of the state preparation against parameter fluctuations added, figure replace

    Observing collapse in two colliding dipolar Bose-Einstein condensates

    Full text link
    We study the collision of two Bose-Einstein condensates with pure dipolar interaction. A stationary pure dipolar condensate is known to be stable when the atom number is below a critical value. However, collapse can occur during the collision between two condensates due to local density fluctuations even if the total atom number is only a fraction of the critical value. Using full three-dimensional numerical simulations, we observe the collapse induced by local density fluctuations. For the purpose of future experiments, we present the time dependence of the density distribution, energy per particle and the maximal density of the condensate. We also discuss the collapse time as a function of the relative phase between the two condensates.Comment: 6 pages, 7 figure

    Universality of soft and collinear factors in hard-scattering factorization

    Full text link
    Universality in QCD factorization of parton densities, fragmentation functions, and soft factors is endangered by the process dependence of the directions of Wilson lines in their definitions. We find a choice of directions that is consistent with factorization and that gives universality between e^+e^- annihilation, semi-inclusive deep-inelastic scattering, and the Drell-Yan process. Universality is only modified by a time-reversal transformation of the soft function and parton densities between Drell-Yan and the other processes, whose only effect is the known reversal of sign for T-odd parton densities like the Sivers function. The modifications of the definitions needed to remove rapidity divergences with light-like Wilson lines do not affect the results.Comment: 4 pages. Extra references. Text and references as in published versio

    Robust Entanglement through Macroscopic Quantum Jumps

    Full text link
    We propose an entanglement generation scheme that requires neither the coherent evolution of a quantum system nor the detection of single photons. Instead, the desired state is heralded by a {\em macroscopic} quantum jump. Macroscopic quantum jumps manifest themselves as a random telegraph signal with long intervals of intense fluorescence (light periods) interrupted by the complete absence of photons (dark periods). Here we show that a system of two atoms trapped inside an optical cavity can be designed such that a dark period prepares the atoms in a maximally entangled ground state. Achieving fidelities above 0.9 is possible even when the single-atom cooperativity parameter C is as low as 10 and when using a photon detector with an efficiency as low as eta = 0.2.Comment: 5 pages, 4 figures, more detailed discussion of underlying physical effect, references update

    Effect of frequency mismatched photons in quantum information processing

    Full text link
    Many promising schemes for quantum information processing (QIP) rely on few-photon interference effects. In these proposals, the photons are treated as being indistinguishable particles. However, single photon sources are typically subject to variation from device to device. Thus the photons emitted from different sources will not be perfectly identical, and there will be some variation in their frequencies. Here, we analyse the effect of this frequency mismatch on QIP schemes. As examples, we consider the distributed QIP protocol proposed by Barrett and Kok, and Hong-Ou-Mandel interference which lies at the heart of many linear optical schemes for quantum computing. In the distributed QIP protocol, we find that the fidelity of entangled qubit states depends crucially on the time resolution of single photon detectors. In particular, there is no reduction in the fidelity when an ideal detector model is assumed, while reduced fidelities may be encountered when using realistic detectors with a finite response time. We obtain similar results in the case of Hong-Ou-Mandel interference -- with perfect detectors, a modified version of quantum interference is seen, and the visibility of the interference pattern is reduced as the detector time resolution is reduced. Our findings indicate that problems due to frequency mismatch can be overcome, provided sufficiently fast detectors are available.Comment: 14 pages, 8 figures. Comments welcome. v2: Minor changes. v3: Cleaned up 3 formatting error

    Proper definition and evolution of generalized transverse momentum distributions

    Full text link
    We consider one of the most fundamental sets of hadronic matrix elements, namely the generalized transverse momentum distributions (GTMDs), and argue that their existing definitions lack proper evolution properties. By exploiting the similarity of GTMDs with the much better understood transverse momentum distributions, we argue that the existing definitions of GTMDs have to include an additional dependence on soft gluon radiation in order to render them properly defined. With this, we manage to obtain the evolution kernel of all (un)polarized quark and gluon GTMDs, which turns out to be spin independent. As a byproduct, all large logarithms can be resummed up to next-to-next-to-leading-logarithmic accuracy with the currently known perturbative ingredients.Comment: v2: typo in eq.(19) corrected. Matches published version in PLB. v1: 9 pages, 2 figure

    Low-energy and low-momentum representation of the virtual Compton scattering amplitude

    Get PDF
    We perform an expansion of the virtual Compton scattering amplitude for low energies and low momenta and show that this expansion covers the transition from the regime to be investigated in the scheduled photon electroproduction experiments to the real Compton scattering regime. We discuss the relation of the generalized polarizabilities of virtual Compton scattering to the polarizabilities of real Compton scattering.Comment: 13 pages, LaTeX2e/RevTeX, no figure
    • …
    corecore