124 research outputs found

    Submarine explosive activity and ocean noise generation at Monowai Volcano, Kermadec Arc: constraints from hydroacoustic T-waves

    Get PDF
    Submarine volcanic activity is difficult to detect, because eruptions at depth are strongly attenuated by seawater. With increasing depth the ambient water pressure increases and limits the expansion of gas and steam such that volcanic eruptions tend to be less violent and less explosive with depth. Furthermore, the thermal conductivity and heat capacity of water causes rapid cooling of ejected products and hence erupted magma cools much more quickly than during subaerial eruptions. Therefore, reports on submarine volcanism are restricted to those sites where erupted products – like the presence of pumice rafts, gas bubbling on the sea surface, and local seawater colour changes - reach the sea surface. However, eruptions cause sound waves that travel over far distances through the Sound-Fixing-And-Ranging (SOFAR) channel, so called T-waves. Seismic networks in French Polynesia recorded T-waves since the 1980’s that originated at Monowai Volcano, Kermadec Arc, and were attributed to episodic growth and collapse events. Repeated swath-mapping campaigns conducted between 1998 and 2011 confirm that Monowai volcano is a highly dynamic volcano

    The Efficacy of Operational Bird Strike Prevention

    Get PDF
    Involving air traffic controllers and pilots into the bird strike prevention process is considered an essential step to increase aviation and avian safety. Prior to implementing operational measures such as real-time warning systems, it is vital to evaluate their feasibility. This paper studies the efficacy of a bird strike advisory system for air traffic control. In addition to the potential safety benefit, the possible impact on airport operations is analyzed. To this end, a previously developed collision avoidance algorithm underlying the system was tested in fast-time Monte Carlo simulations involving various air traffic and bird densities to obtain representative conclusions for different operational conditions. The results demonstrate the strong safety potential of operational bird strike prevention in case of precise bird movement prediction. Unless airports operate close to their capacity limits while bird abundance is high, the induced delays remain tolerable. Prioritization of hazardous strikes involving large individuals as well as flocks of birds are expected to support operational feasibility in all conditions

    Using IMS hydrophone data for detecting submarine volcanic activity: Insights from Monowai, 26°S Kermadec Arc

    Get PDF
    Only little is known on active volcanism in the ocean. As eruptions are attenuated by seawater and fallout does not regularly reach the sea surface, eruption rates and mechanisms are poorly understood. Estimations on the number of active volcanoes across the modern seas range from hundreds to thousands, but only very few active sites are known. Monowai is a submarine volcanic centre in the northern Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of five days, with explosive activity directly linked to the generation of seismoacoustic tertiary waves (‘T-phases’), recorded at three broadband seismic stations in the region. We show, using windowed cross-correlation and time-difference-of-arrival techniques, that T-phases associated with this eruption are detected as far as Ascension Island, South Atlantic Ocean, where two bottom-moored hydrophone arrays are operated as part of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). We observe a high incidence of T-phase arrivals during the time of the eruption, with the angle of arrival stabilizing at the geodesic azimuth between the IMS arrays and Monowai. T-phases from the volcanic centre must therefore have propagated through the Sound Fixing And Ranging (SOFAR) channel in the South Pacific and South Atlantic Oceans and over a total geodesic range of approximately 15,800 km, one of the longest source-receiver distances of any naturally occurring underwater signal ever observed

    Analysis of Risk-Based Operational Bird Strike Prevention

    Get PDF
    Bird strike prevention in civil aviation has traditionally focused on the airport perimeter. Since the risk of especially damaging bird strikes outside the airport boundaries is rising, this paper investigates the safety potential of operational bird strike prevention involving pilots and controllers. In such a concept, controllers would be equipped with a bird strike advisory system, allowing them to delay departures which are most vulnerable to the consequences of bird strikes in case of high bird strike risk. An initial study has shown the strong potential of the concept to prevent bird strikes in case of perfect bird movement prediction. This paper takes the research to the next level by taking into account the limited predictability of bird tracks. As such, the collision avoidance algorithm is extended to a bird strike risk algorithm. The risk of bird strikes is calculated for birds expected to cross the extended runway center line and to cause aircraft damage upon impact. By specifically targeting these birds and excluding birds lingering on the runway which are taken care of by the local wildlife control, capacity reductions should be limited, and the implementation remain feasible. The extrapolation of bird tracks is performed by simple linear regression based on the bird positions known at the intended take-off times. To calculate the probability of collision, uncertainties resulting from variability in bird velocity and track are included. The study demonstrates the necessity to limit alerts to potentially damaging strikes with birds crossing the extended runway center line to keep the imposed delays tolerable for airports operating at their capacity limits. It is shown that predicting bird movements based on simple linear regression without considering individual bird behavior is insufficient to achieve a safety-effect. Hence, in-depth studies of multi-year bird data to develop bird behavior models and reliable predictions are recommended for future research. This is expected to facilitate the implementation of a bird strike advisory system satisfying both safety and capacity aspects

    Glioblastoma multiforme with oligodendroglial component (GBMO): favorable outcome after post-operative radiotherapy and chemotherapy with nimustine (ACNU) and teniposide (VM26)

    Get PDF
    BACKGROUND: The presence of an oligodendroglial component within a glioblastoma multiforme (GBM) is considered a prognostically favorable factor, but the clinical outcome of patients with glioblastoma multiforme with oligodendroglial component (GBMO) after combined post-operative radiotherapy and chemotherapy has rarely been reported. METHODS: We analyzed overall and progression-free survival in a group of ten consecutive patients initially diagnosed with GBMO between 1996 and 2004 (4.2% of all GBM patients). Median (range) age was 54 (34–73) years, 90% were resected and median radiotherapy dose was 54 (45–60.6) Gy. 80% of patients received post-operative chemotherapy with nimustine (ACNU) and VM26 (teniposide) for a median of 3.5 (1–6) cycles, the remainder were treated with post-operative radiotherapy alone. All specimens were reviewed by an experienced neuropathologist. RESULTS: Neuropathological re-evaluation revealed GBM with an oligodendroglial component of 30% or less in five cases, predominant oligoastrocytic tumors with focal areas of GBM in four patients and WHO grade III oligoastrocytoma with questionable transition to GBM in one patient. Four of ten patients were alive at at 40, 41, 41 and 82 months. The median overall survival (Kaplan-Meier) was 26 months, the 2-year survival rate was 60% (progression-free survival: 9.8 months and 40%, respectively). CONCLUSION: In conclusion, patients with GBMO treated with post-operative radiotherapy and chemotherapy with ACNU/VM26 had a better prognosis than reported for GBM in modern chemoradiation series

    Plasma Transfusion and Procoagulant Product Administration in Extracorporeal Membrane Oxygenation:A Secondary Analysis of an International Observational Study on Current Practices

    Get PDF
    OBJECTIVES: To achieve optimal hemostatic balance in patients on extracorporeal membrane oxygenation (ECMO), a liberal transfusion practice is currently applied despite clear evidence. We aimed to give an overview of the current use of plasma, fibrinogen concentrate, tranexamic acid (TXA), and prothrombin complex concentrate (PCC) in patients on ECMO.DESIGN: A prespecified subanalysis of a multicenter retrospective study. Venovenous (VV)-ECMO and venoarterial (VA)-ECMO are analyzed as separate populations, comparing patients with and without bleeding and with and without thrombotic complications. SETTING: Sixteen international ICUs.PATIENTS: Adult patients on VA-ECMO or VV-ECMO.INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of 420 VA-ECMO patients, 59% (n = 247) received plasma, 20% (n = 82) received fibrinogen concentrate, 17% (n = 70) received TXA, and 7% of patients (n = 28) received PCC. Fifty percent of patients (n = 208) suffered bleeding complications and 27% (n = 112) suffered thrombotic complications. More patients with bleeding complications than patients without bleeding complications received plasma (77% vs. 41%, p &lt; 0.001), fibrinogen concentrate (28% vs 11%, p &lt; 0.001), and TXA (23% vs 10%, p &lt; 0.001). More patients with than without thrombotic complications received TXA (24% vs 14%, p = 0.02, odds ratio 1.75) in VA-ECMO, where no difference was seen in VV-ECMO. Of 205 VV-ECMO patients, 40% (n = 81) received plasma, 6% (n = 12) fibrinogen concentrate, 7% (n = 14) TXA, and 5% (n = 10) PCC. Thirty-nine percent (n = 80) of VV-ECMO patients suffered bleeding complications and 23% (n = 48) of patients suffered thrombotic complications. More patients with than without bleeding complications received plasma (58% vs 28%, p &lt; 0.001), fibrinogen concentrate (13% vs 2%, p &lt; 0.01), and TXA (11% vs 2%, p &lt; 0.01). CONCLUSIONS: The majority of patients on ECMO receive transfusions of plasma, procoagulant products, or antifibrinolytics. In a significant part of the plasma transfused patients, this was in the absence of bleeding or prolonged international normalized ratio. This poses the question if these plasma transfusions were administered for another indication or could have been avoided.</p
    corecore