30 research outputs found

    The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    Get PDF
    Observations of the extraordinarily bright optical afterglow (OA) of GRB 991208 started 2.1 d after the event. The flux decay constant of the OA in the R-band is -2.30 +/- 0.07 up to 5 d, which is very likely due to the jet effect, and after that it is followed by a much steeper decay with constant -3.2 +/- 0.2, the fastest one ever seen in a GRB OA. A negative detection in several all-sky films taken simultaneously to the event implies either a previous additional break prior to 2 d after the occurrence of the GRB (as expected from the jet effect). The existence of a second break might indicate a steepening in the electron spectrum or the superposition of two events. Once the afterglow emission vanished, contribution of a bright underlying SN is found, but the light curve is not sufficiently well sampled to rule out a dust echo explanation. Our determination of z = 0.706 indicates that GRB 991208 is at 3.7 Gpc, implying an isotropic energy release of 1.15 x 10E53 erg which may be relaxed by beaming by a factor > 100. Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus given support to a massive star origin. The absolute magnitude is M_B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of 11.5 +/- 7.1 Mo/yr. The quasi-simultaneous broad-band photometric spectral energy distribution of the afterglow is determined 3.5 day after the burst (Dec 12.0) implying a cooling frequency below the optical band, i.e. supporting a jet model with p = -2.30 as the index of the power-law electron distribution.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 6 figures (Fig. 3 and Fig. 4 have been updated

    CXCR3 identifies human naive CD8+ T cells with enhanced effector differentiation potential

    Get PDF
    In mice, the ability of naive T (TN) cells to mount an effector response correlates with TCR sensitivity for self-derived Ags, which can be quantified indirectly by measuring surface expression levels of CD5. Equivalent findings have not been reported previously in humans. We identified two discrete subsets of human CD8+ TN cells, defined by the absence or presence of the chemokine receptor CXCR3. The more abundant CXCR3+ TN cell subset displayed an effector-like transcriptional profile and expressed TCRs with physicochemical characteristics indicative of enhanced interactions with peptide-HLA class I Ags.Moreover, CXCR3+ TN cells frequently produced IL-2 and TNF in response to nonspecific activation directly ex vivo and differentiated readily into Ag-specific effector cells in vitro. Comparative analyses further revealed that human CXCR3+ TN cells were transcriptionally equivalent to murine CXCR3+ TN cells, which expressed high levels of CD5. These findings provide support for the notion that effector differentiation is shaped by heterogeneity in the preimmune repertoire of human CD8+ T cells
    corecore