525 research outputs found

    On the Topic of Jets: Disentangling Quarks and Gluons at Colliders

    Get PDF
    We introduce jet topics: a framework to identify underlying classes of jets from collider data. Because of a close mathematical relationship between distributions of observables in jets and emergent themes in sets of documents, we can apply recent techniques in "topic modeling" to extract jet topics from data with minimal or no input from simulation or theory. As a proof of concept with parton shower samples, we apply jet topics to determine separate quark and gluon jet distributions for constituent multiplicity. We also determine separate quark and gluon rapidity spectra from a mixed Z-plus-jet sample. While jet topics are defined directly from hadron-level multi-differential cross sections, one can also predict jet topics from first-principles theoretical calculations, with potential implications for how to define quark and gluon jets beyond leading-logarithmic accuracy. These investigations suggest that jet topics will be useful for extracting underlying jet distributions and fractions in a wide range of contexts at the Large Hadron Collider.Comment: 8 pages, 4 figures, 1 table. v2: Improved discussion to match PRL versio

    DETERMINATION OF THE IMMUNE RESPONSE (LOW, MEAN, HIGH) IN RECIPIENTS OF RENAL GRAFTS ACCORDING TO THEIR PROLIFERATIVE ACTIVITY

    Get PDF
    No abstrac

    Energy flow polynomials: A complete linear basis for jet substructure

    Get PDF
    We introduce the energy flow polynomials: a complete set of jet substructure observables which form a discrete linear basis for all infrared- and collinear-safe observables. Energy flow polynomials are multiparticle energy correlators with specific angular structures that are a direct consequence of infrared and collinear safety. We establish a powerful graph-theoretic representation of the energy flow polynomials which allows us to design efficient algorithms for their computation. Many common jet observables are exact linear combinations of energy flow polynomials, and we demonstrate the linear spanning nature of the energy flow basis by performing regression for several common jet observables. Using linear classification with energy flow polynomials, we achieve excellent performance on three representative jet tagging problems: quark/gluon discrimination, boosted W tagging, and boosted top tagging. The energy flow basis provides a systematic framework for complete investigations of jet substructure using linear methods.Comment: 41+15 pages, 13 figures, 5 tables; v2: updated to match JHEP versio

    ENZYMATIC TECHNIQUE AS AN ESSENTIAL PART OF IMMUNOLOGICAL MONITORING FOR REJECTION CRISIS OF HUMAN KIDNEY GRAFTS

    Get PDF
    No abstrac

    Classification without labels: Learning from mixed samples in high energy physics

    Get PDF
    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimal classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.Comment: 18 pages, 5 figures; v2: intro extended and references added; v3: additional discussion to match JHEP versio

    An operational definition of quark and gluon jets

    Full text link
    While "quark" and "gluon" jets are often treated as separate, well-defined objects in both theoretical and experimental contexts, no precise, practical, and hadron-level definition of jet flavor presently exists. To remedy this issue, we develop and advocate for a data-driven, operational definition of quark and gluon jets that is readily applicable at colliders. Rather than specifying a per-jet flavor label, we aggregately define quark and gluon jets at the distribution level in terms of measured hadronic cross sections. Intuitively, quark and gluon jets emerge as the two maximally separable categories within two jet samples in data. Benefiting from recent work on data-driven classifiers and topic modeling for jets, we show that the practical tools needed to implement our definition already exist for experimental applications. As an informative example, we demonstrate the power of our operational definition using Z+jet and dijet samples, illustrating that pure quark and gluon distributions and fractions can be successfully extracted in a fully well-defined manner.Comment: 38 pages, 10 figures, 1 table; v2: updated to match JHEP versio
    • …
    corecore