282 research outputs found

    Mechanical properties of a lap joint under uniform clamping pressure

    Get PDF
    Equations were derived for the load deflection relations, the energy dissipation per cycle, and the instantaneous rate of dissipation for a lap joint idealized as two overlapping plates clamped together under a uniform clamping pressure

    A study on range gated temporal reference acoustical holography Final technical report

    Get PDF
    Acoustical holographic imaging techniques for noninvasive visualization of soft tissue structures in ma

    Repair of Aberrant Splicing in Growth Hormone Receptor by Antisense Oligonucleotides Targeting the Splice Sites of a Pseudoexon

    Get PDF
    Context: The GH receptor (GHR) pseudoexon 6 Psi defect is a frequent cause of GH insensitivity (GHI) resulting from a non-functioning GH receptor (GHR). It results in a broad range of phenotypes and may also be present in patients diagnosed as idiopathic short stature.Objective: Our objective was to correct aberrant GHR splicing and inclusion of 6 Psi using exon-skipping antisense oligonucleotides (ASOs).Design and Setting: Three ASOs binding the 5' (ASO-5), 3' (ASO-3), and branch site (ASO-Br) of 6 Psi were tested in an in vitro splicing assay and a cell transfection system. The wild-type (wt) and mutant (mt) DNA minigenes (wt- and mtL1-GHR6 Psi-L2, respectively) were created by inserting the GHR 6 Psi in a well-characterized splice reporter (Adml-par). For the in vitro splicing assay, the wt- and mtL1-GHR6 Psi-L2 were transcribed into pre-mRNA in the presence of [alpha P-32]GTP and incubated with ASOs in HeLa nuclear extracts. For the cell transfection studies, wt-and mtL1-GHR6 Psi-L2 cloned into pcDNA 3.1 were transfected with ASOs into HEK293 cells. After 48 h, RNA was extracted and radiolabeled RT-PCR products quantified.Results: ASO-3 induced an almost complete pseudoexon skipping in vitro and in HEK293 cells. This effect was dose dependent and maximal at 125-250 nM. ASO-5 produced modest pseudoexon skipping, whereas ASO-Br had no effect. Targeting of two splice elements simultaneously was less effective than targeting one. ASO-Br was tested on the wtL1-GHR6 Psi-L2 and did not act as an enhancer of 6 Psi inclusion.Conclusions: The exon-skipping ASO approach was effective in correcting aberrant GHR splicing and may be a promising therapeutic tool. (J Clin Endocrinol Metab 95: 3542-3546, 2010

    Whole-exome sequencing in the differential diagnosis of primary adrenal insufficiency in children

    Get PDF
    Adrenal insufficiency is a rare, but potentially fatal medical condition. In children, the cause is most commonly congenital and in recent years a growing number of causative gene mutations have been identified resulting in a myriad of syndromes that share adrenal insufficiency as one of the main characteristics. The evolution of adrenal insufficiency is dependent on the variant and the particular gene affected, meaning that rapid and accurate diagnosis is imperative for effective treatment of the patient. Common practice is for candidate genes to be sequenced individually, which is a time-consuming process and complicated by overlapping clinical phenotypes. However, with the availability, and increasing cost effectiveness of whole-exome sequencing, there is the potential for this to become a powerful diagnostic tool. Here, we report the results of whole-exome sequencing of 43 patients referred to us with a diagnosis of familial glucocorticoid deficiency (FGD) who were mutation negative for MC2R, MRAP, and STAR the most commonly mutated genes in FGD. WES provided a rapid genetic diagnosis in 17/43 sequenced patients, for the remaining 60% the gene defect may be within intronic/regulatory regions not covered by WES or may be in gene(s) representing novel etiologies. The diagnosis of isolated or familial glucocorticoid deficiency was only confirmed in 3 of the 17 patients, other genetic diagnoses were adrenal hypo- and hyperplasia, Triple A, and autoimmune polyendocrinopathy syndrome type I, emphasizing both the difficulty of phenotypically distinguishing between disorders of PAI and the utility of WES as a tool to achieve thi

    ACTH signalling and adrenal development: lessons from mouse models

    Get PDF
    The melanocortin-2-receptor (MC2R), also known as the ACTH receptor, is a critical component of the hypothalamic–pituitary–adrenal axis. The importance of MC2R in adrenal physiology is exemplified by the condition familial glucocorticoid deficiency (FGD), a potentially fatal disease characterised by isolated cortisol deficiency. MC2R mutations cause ~25% of cases. The discovery of a MC2R accessory protein MRAP, mutations of which account for ~20% of FGD, has provided insight into MC2R trafficking and signalling. MRAP is a single transmembrane domain accessory protein highly expressed in the adrenal gland and essential for MC2R expression and function. Mouse models helped elucidate the action of ACTH. The Mc2r-knockout (Mc2r−/−) mice was the first mouse model developed to have adrenal insufficiency with deficiencies in glucocorticoid, mineralocorticoid and catecholamines. We recently reported the generation of the Mrap−/− mice which better mimics the human FGD phenotype with isolated glucocorticoid deficiency alone. The adrenal glands of adult Mrap−/− mice were grossly dysmorphic with a thickened capsule, deranged zonation and deranged WNT4/beta-catenin and sonic hedgehog (SHH) pathway signalling. Collectively, these mouse models of FGD highlight the importance of ACTH and MRAP in adrenal progenitor cell regulation, cortex maintenance and zonation

    First principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets

    Full text link
    Recently it was demonstrated (Schattschneider et al., Nature 441 (2006), 486), that an analogue of the X-ray magnetic circular dichroism (XMCD) experiment can be performed with the transmission electron microscope (TEM). The new phenomenon has been named energy-loss magnetic chiral dichroism (EMCD). In this work we present a detailed ab initio study of the chiral dichroism in the Fe, Co and Ni transition elements. We discuss the methods used for the simulations together with the validity and accuracy of the treatment, which can, in principle, apply to any given crystalline specimen. The dependence of the dichroic signal on the sample thickness, accuracy of the detector position and the size of convergence and collection angles is calculated.Comment: 9 pages, 6 figures, submitted to Physical Review

    A Sphingosine-1-Phosphate Lyase Mutation Associated With Congenital Nephrotic Syndrome and Multiple Endocrinopathy.

    Get PDF
    Background: Loss of function mutations in SGPL1 are associated with Sphingosine-1-phosphate lyase insufficiency syndrome, comprising steroid resistant nephrotic syndrome, and primary adrenal insufficiency (PAI) in the majority of cases. SGPL1 encodes sphingosine-1-phosphate lyase (SGPL1) which is a major modulator of sphingolipid signaling. Case Presentation: A Pakistani male infant presented at 5 months of age with failure to thrive, nephrotic syndrome, primary adrenal insufficiency, hypothyroidism, and hypogonadism. Other systemic manifestations included persistent lymphopenia, ichthyosis, and motor developmental delay. Aged 9 months, he progressed rapidly into end stage oligo-anuric renal failure and subsequently died. Sanger sequencing of the entire coding region of SGPL1 revealed the novel association of a rare homozygous mutation (chr10:72619152, c.511A>G, p.N171D; MAF-1.701e-05) with the condition. Protein expression of the p.N171D mutant was markedly reduced compared to SGPL1 wild type when overexpressed in an SGPL1 knockout cell line, and associated with a severe clinical phenotype. Conclusions: The case further highlights the emerging phenotype of patients with loss-of-function SGPL1 mutations. Whilst nephrotic syndrome is a recognized feature of other disorders of sphingolipid metabolism, sphingosine-1-phosphate lyase insufficiency syndrome is unique amongst the sphingolipidoses in presenting with multiple endocrinopathies. Given the multi-systemic and progressive nature of this form of PAI/ nephrotic syndrome, a genetic diagnosis is crucial for optimal management and appropriate screening for comorbidities in these patients

    Accounting for the utilization of a N₂O mitigation tool in the IPCC inventory methodology for agricultural soils

    Get PDF
    In this study we review recent studies where dicyandiamide was used as a nitrification inhibitor to reduce both N₂O emissions from urine patches and nitrate leaching from pasture systems, and which led to the development of a commercial product for use on farmland. On average, emissions of N₂O and nitrate leaching were reduced by 72% and 61%, respectively. This study then demonstrates how a mitigation tool can be accounted for in the Intergovernmental Panel on Climate Change's inventory methodology when constructing an inventory of New Zealand's agricultural soil N₂O emissions. The current New Zealand specific emission factors for EF1 (0.01), EF3PRP (0.01) and FracLEACH (0.07) are amended to values of 0.0058, 0.0058 and 0.0455. Examples are also given, based on OVERSEER TM models, of the implications of farm management scenarios on N₂O inventories and total greenhouse gas production when using a N₂O mitigation tool; CO₂ equivalents kg⁻¹ milk solid decreased from 14.2 to as little as 11.7, depending on the management scenario modelled

    Genetic Defects in the Growth Hormone–IGF-I Axis Causing Growth Hormone Insensitivity and Impaired Linear Growth

    Get PDF
    Human genetic defects in the growth hormone (GH)–IGF-I axis affecting the IGF system present with growth failure as their principal clinical feature. This is usually associated with GH insensitivity (GHI) presenting in childhood as severe or mild short stature. Dysmorphic features and metabolic abnormalities may also be present. The field of GHI due to mutations affecting GH action has evolved rapidly since the first description of the extreme phenotype related to homozygous GH receptor (GHR) mutations in 1966. A continuum of genetic, phenotypic, and biochemical abnormalities can be defined associated with clinically relevant defects in linear growth. The mechanisms of the GH–IGF-I axis in the regulation of normal human growth is discussed followed by descriptions of mutations in GHR, STAT5B, IGF-I, IGFALS, IGF1R, and GH1 defects causing bio-inactive GH or anti-GH antibodies. These GH–IGF-I axis defects are associated with a range of clinical, and hormonal characteristics. An up-dated approach to the clinical assessment of the patient with GHI focusing on investigation of the GH–IGF-I axis and relevant molecular studies contributing to the identification of causative genetic defects is also discussed
    corecore