396 research outputs found

    On the Effect of Quantum Interaction Distance on Quantum Addition Circuits

    Full text link
    We investigate the theoretical limits of the effect of the quantum interaction distance on the speed of exact quantum addition circuits. For this study, we exploit graph embedding for quantum circuit analysis. We study a logical mapping of qubits and gates of any Ω(logn)\Omega(\log n)-depth quantum adder circuit for two nn-qubit registers onto a practical architecture, which limits interaction distance to the nearest neighbors only and supports only one- and two-qubit logical gates. Unfortunately, on the chosen kk-dimensional practical architecture, we prove that the depth lower bound of any exact quantum addition circuits is no longer Ω(logn)\Omega(\log {n}), but Ω(nk)\Omega(\sqrt[k]{n}). This result, the first application of graph embedding to quantum circuits and devices, provides a new tool for compiler development, emphasizes the impact of quantum computer architecture on performance, and acts as a cautionary note when evaluating the time performance of quantum algorithms.Comment: accepted for ACM Journal on Emerging Technologies in Computing System

    Evolving a puncture black hole with fixed mesh refinement

    Full text link
    We present an algorithm for treating mesh refinement interfaces in numerical relativity. We detail the behavior of the solution near such interfaces located in the strong field regions of dynamical black hole spacetimes, with particular attention to the convergence properties of the simulations. In our applications of this technique to the evolution of puncture initial data with vanishing shift, we demonstrate that it is possible to simultaneously maintain second order convergence near the puncture and extend the outer boundary beyond 100M, thereby approaching the asymptotically flat region in which boundary condition problems are less difficult and wave extraction is meaningful.Comment: 18 pages, 12 figures. Minor changes, final PRD versio

    Surface code quantum computing by lattice surgery

    Full text link
    In recent years, surface codes have become a leading method for quantum error correction in theoretical large scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural 2-dimensional nearest neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect- based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance 3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.Comment: Published version. 29 pages, 18 figure

    Path Selection for Quantum Repeater Networks

    Full text link
    Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of quantum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstra's algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstra's algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.Comment: 12 pages, 8 figure

    4-Decyl­phenyl 4-benz­yloxy-3-methyl­benzoate

    Get PDF
    In the title compound, C31H38O3, the central benzene ring makes dihedral angles of 66.06 (9) and 65.21 (8)°, respectively, with the benzyl and 4-decyl­phenyl rings

    Exact boundary conditions in numerical relativity using multiple grids: scalar field tests

    Full text link
    Cauchy-Characteristic Matching (CCM), the combination of a central 3+1 Cauchy code with an exterior characteristic code connected across a time-like interface, is a promising technique for the generation and extraction of gravitational waves. While it provides a tool for the exact specification of boundary conditions for the Cauchy evolution, it also allows to follow gravitational radiation all the way to infinity, where it is unambiguously defined. We present a new fourth order accurate finite difference CCM scheme for a first order reduction of the wave equation around a Schwarzschild black hole in axisymmetry. The matching at the interface between the Cauchy and the characteristic regions is done by transfering appropriate characteristic/null variables. Numerical experiments indicate that the algorithm is fourth order convergent. As an application we reproduce the expected late-time tail decay for the scalar field.Comment: 14 pages, 5 figures. Included changes suggested by referee

    Momentum constraint relaxation

    Full text link
    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature generated by a vector potential w_i, as outlined by York. The components of w_i are relaxed to solve approximately the momentum constraint equations, pushing slowly the evolution toward the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly.Comment: 17 pages, 10 figures. New numerical tests and references added. More detailed description of the algorithms are provided. Final published versio

    Towards absorbing outer boundaries in General Relativity

    Get PDF
    We construct exact solutions to the Bianchi equations on a flat spacetime background. When the constraints are satisfied, these solutions represent in- and outgoing linearized gravitational radiation. We then consider the Bianchi equations on a subset of flat spacetime of the form [0,T] x B_R, where B_R is a ball of radius R, and analyze different kinds of boundary conditions on \partial B_R. Our main results are: i) We give an explicit analytic example showing that boundary conditions obtained from freezing the incoming characteristic fields to their initial values are not compatible with the constraints. ii) With the help of the exact solutions constructed, we determine the amount of artificial reflection of gravitational radiation from constraint-preserving boundary conditions which freeze the Weyl scalar Psi_0 to its initial value. For monochromatic radiation with wave number k and arbitrary angular momentum number l >= 2, the amount of reflection decays as 1/(kR)^4 for large kR. iii) For each L >= 2, we construct new local constraint-preserving boundary conditions which perfectly absorb linearized radiation with l <= L. (iv) We generalize our analysis to a weakly curved background of mass M, and compute first order corrections in M/R to the reflection coefficients for quadrupolar odd-parity radiation. For our new boundary condition with L=2, the reflection coefficient is smaller than the one for the freezing Psi_0 boundary condition by a factor of M/R for kR > 1.04. Implications of these results for numerical simulations of binary black holes on finite domains are discussed.Comment: minor revisions, 30 pages, 6 figure

    Chronic gestational cocaine treatment decreases oxytocin levels in the medial preoptic area, ventral tegmental area and hippocampus in Sprague-Dawley rats

    Get PDF
    We examined the effects of gestational cocaine treatment on oxytocin levels in the whole hippocampus (HIP), ventral tegmental area (VTA), medial preoptic area (MPOA) and amygdala (AMY) in rat dams on postpartum days (PPDs) 1 and 2. Cocaine treatment significantly reduced oxytocin levels in the MPOA within 12–16 h of delivery (PPD 1), but had no significant effect on the other brain areas. Oxytocin was significantly reduced in the HIP and VTA but not in the AMY or MPOA on PPD 2. These data provide the first evidence for the reduction of oxytocin levels in the VTA, HIP and MPOA as a result of gestational cocaine treatment

    Coherent Bayesian analysis of inspiral signals

    Full text link
    We present in this paper a Bayesian parameter estimation method for the analysis of interferometric gravitational wave observations of an inspiral of binary compact objects using data recorded simultaneously by a network of several interferometers at different sites. We consider neutron star or black hole inspirals that are modeled to 3.5 post-Newtonian (PN) order in phase and 2.5 PN in amplitude. Inference is facilitated using Markov chain Monte Carlo methods that are adapted in order to efficiently explore the particular parameter space. Examples are shown to illustrate how and what information about the different parameters can be derived from the data. This study uses simulated signals and data with noise characteristics that are assumed to be defined by the LIGO and Virgo detectors operating at their design sensitivities. Nine parameters are estimated, including those associated with the binary system, plus its location on the sky. We explain how this technique will be part of a detection pipeline for binary systems of compact objects with masses up to 20 \sunmass, including cases where the ratio of the individual masses can be extreme.Comment: Accepted for publication in Classical and Quantum Gravity, Special issue for GWDAW-1
    corecore