759 research outputs found

    A Simple and Effective Method for Construction of Escherichia coli Strains Proficient for Genome Engineering

    Get PDF
    Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the l Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.open7

    Diagnosing collaboration in practice-based learning: Equality and intra-individual variability of physical interactivity

    Get PDF
    Collaborative problem solving (CPS), as a teaching and learning approach, is considered to have the potential to improve some of the most important skills to prepare students for their future. CPS often differs in its nature, practice, and learning outcomes from other kinds of peer learning approaches, including peer tutoring and cooperation; and it is important to establish what identifies collaboration in problem-solving situations. The identification of indicators of collaboration is a challenging task. However, students physical interactivity can hold clues of such indicators. In this paper, we investigate two non-verbal indexes of student physical interactivity to interpret collaboration in practice-based learning environments: equality and intra-individual variability. Our data was generated from twelve groups of three Engineering students working on open-ended tasks using a learning analytics system. The results show that high collaboration groups have member students who present high and equal amounts of physical interactivity and low and equal amounts of intra-individual variability

    Integrating Extrinsic and Intrinsic Cues into a Minimal Model of Lineage Commitment for Hematopoietic Progenitors

    Get PDF
    Autoregulation of transcription factors and cross-antagonism between lineage-specific transcription factors are a recurrent theme in cell differentiation. An equally prevalent event that is frequently overlooked in lineage commitment models is the upregulation of lineage-specific receptors, often through lineage-specific transcription factors. Here, we use a minimal model that combines cell-extrinsic and cell-intrinsic elements of regulation in order to understand how both instructive and stochastic events can inform cell commitment decisions in hematopoiesis. Our results suggest that cytokine-mediated positive receptor feedback can induce a “switch-like” response to external stimuli during multilineage differentiation by providing robustness to both bipotent and committed states while protecting progenitors from noise-induced differentiation or decommitment. Our model provides support to both the instructive and stochastic theories of commitment: cell fates are ultimately driven by lineage-specific transcription factors, but cytokine signaling can strongly bias lineage commitment by regulating these inherently noisy cell-fate decisions with complex, pertinent behaviors such as ligand-mediated ultrasensitivity and robust multistability. The simulations further suggest that the kinetics of differentiation to a mature cell state can depend on the starting progenitor state as well as on the route of commitment that is chosen. Lastly, our model shows good agreement with lineage-specific receptor expression kinetics from microarray experiments and provides a computational framework that can integrate both classical and alternative commitment paths in hematopoiesis that have been observed experimentally

    Accumulation of Endogenous LITAF in Aggresomes

    Get PDF
    LITAF is a 161 amino acid cellular protein which includes a proline rich N-terminus and a conserved C-terminal domain known as the simple-like domain. Mutations in LITAF have been identified in Charcot-Marie tooth disease, a disease characterized by protein aggregates. Cells transfected with cellular LITAF reveal that LITAF is localized to late endosomes/lysosomes. Here we investigated the intracellular localization of endogenous LITAF. We demonstrated that endogenous LITAF accumulates at a discrete cytoplasmic site in BGMK cells that we identify as the aggresome. To determine the domain within LITAF that is responsible for the localization of LITAF to aggresomes, we created a construct that contained the C-terminal simple-like domain of LITAF and found that this construct also localizes to aggresomes. These data suggest the simple-like domain is responsible for targeting endogenous LITAF to the aggresome

    A phase II study of the bispecific antibody MDX-H210 (anti-HER2 × CD64) with GM-CSF in HER2+ advanced prostate cancer

    Get PDF
    The proto-oncogene HER2 presents a novel therapeutic target. We report results in 25 patients with HER2+ advanced prostate cancer treated with the bispecific antibody MDX-H210 15 μg m−2by intravenous infusion plus GM-CSF 5 μg kg−1day−1by subcutaneous injection for 4 days repeated weekly for 6 weeks. Patients with stable disease or better received further cycles of treatment until disease progression or study withdrawal. 1 patient received no treatment and 4 received less than 1 cycle and are included in the toxicity analysis only. Median duration of follow up was 105+ (range 21–188) days. Toxicity was generally NCI-CTG 0–2. There were 2 grade 4 adverse events (heart failure and dyspnoea) and 1 grade 3 event (allergic reaction) resulting in discontinuation of the study medication. There were 9 further grade 3 events not resulting in trial withdrawal. There were no treatment-related deaths. 7/20 (35%) evaluable patients had a >50% PSA response of median duration 128 (range 71–184+) days. 7/12 (58%) patients with evaluable pain had improvements in pain scores. The PSA relative velocity on therapy decreased in 15/18 (83%) assessable patients compared to pre-study. GM-CSF and MDX-H210 is active in hormone refractory prostate carcinoma with acceptable toxicity; further studies are warranted. © 2001 Cancer Research Campaign http://www.bjcancer.co

    British industrial relations pluralism in the era of neoliberalism

    Get PDF
    This article provides a broad overview of the pluralist tradition in UK industrial relations scholarship, identifying its defining characteristics and mapping its evolution in recent decades. It deals in turn with the following: the appreciation of the relative interests of workers and employers that lies at the heart of the pluralist frame of reference, the research agenda that flows from this understanding, pluralist conceptions of context and agency within industrial relations, the standards that pluralists habitually use when assessing the employment relationship, the targets and modes of critique that pluralists direct against intellectual opponents, and the prescriptions that pluralists offer for industrial relations reform. Throughout the article there is a focus on change within the pluralist tradition and the manner in which it has adapted to the hegemony of neoliberalism in the realms of both ideas and policy

    Anti-TNF-Alpha Therapy Enhances the Effects of Enzyme Replacement Therapy in Rats with Mucopolysaccharidosis Type VI

    Get PDF
    Although enzyme replacement therapy (ERT) is available for several lysosomal storage disorders, the benefit of this treatment to the skeletal system is very limited. Our previous work has shown the importance of the Toll-like receptor 4/TNF-alpha inflammatory pathway in the skeletal pathology of the mucopolysaccharidoses (MPS), and we therefore undertook a study to examine the additive benefit of combining anti-TNF-alpha therapy with ERT in a rat model of MPS type VI.MPS VI rats were treated for 8 months with Naglazyme® (recombinant human N-acetyl-galactosamine-4-sulfatase), or by a combined protocol using Naglazyme® and the rat-specific anti-TNF-alpha drug, CNTO1081. Both protocols led to markedly reduced serum levels of TNF-alpha and RANKL, although only the combined treatment reduced TNF-alpha in the articular cartilage. Analysis of cultured articular chondrocytes showed that the combination therapy also restored collagen IIA1 expression, and reduced expression of the apoptotic marker, PARP. Motor activity and mobility were improved by ERT, and these were significantly enhanced by combination treatment. Tracheal deformities in the MPS VI animals were only improved by combination therapy, and there was a modest improvement in bone length. Ceramide levels in the trachea also were markedly reduced. MicroCT analysis did not demonstrate any significant positive effects on bone microarchitecture from either treatment, nor was there histological improvement in the bone growth plates.The results demonstrate that combining ERT with anti-TNF-alpha therapy improved the treatment outcome and led to significant clinical benefit. They also further validate the usefulness of TNF-alpha, RANKL and other inflammatory molecules as biomarkers for the MPS disorders. Further evaluation of this combination approach in other MPS animal models and patients is warranted

    Immune Boosting Explains Regime-Shifts in Prevaccine-Era Pertussis Dynamics

    Get PDF
    Understanding the biological mechanisms underlying episodic outbreaks of infectious diseases is one of mathematical epidemiology’s major goals. Historic records are an invaluable source of information in this enterprise. Pertussis (whooping cough) is a re-emerging infection whose intermittent bouts of large multiannual epidemics interspersed between periods of smaller-amplitude cycles remain an enigma. It has been suggested that recent increases in pertussis incidence and shifts in the age-distribution of cases may be due to diminished natural immune boosting. Here we show that a model that incorporates this mechanism can account for a unique set of pre-vaccine-era data from Copenhagen. Under this model, immune boosting induces transient bursts of large amplitude outbreaks. In the face of mass vaccination, the boosting model predicts larger and more frequent outbreaks than do models with permanent or passively-waning immunity. Our results emphasize the importance of understanding the mechanisms responsible for maintaining immune memory fo
    corecore