5,189 research outputs found

    Quantifying the effectiveness of silver ring splints to correct swan-neck deformity

    No full text
    Swan-neck deformity is a common symptom of rheumatoid arthritis affecting the fingers. It can be classified by hyperextension of the proximal interphalangeal (PIP) joint and flexion of the distal interphalangeal joint [1]. Methods to correct hyperextension of the PIP joint range from surgery to splinting techniques [2]. Silver ring splints (SRSs) were recently identified as a possible alternative to surgery and traditional thermoplastic splints because patient adherence was improved by their appearance [3]. The objective of this study was to investigate whether the SRSs restrict PIP joint hyperextension during a fine dexterity task

    The Great Tradition

    Get PDF

    Spatiotemporal dynamics of quantum jumps with Rydberg atoms

    Get PDF
    We study the nonequilibrium dynamics of quantum jumps in a one-dimensional chain of atoms. Each atom is driven on a strong transition to a short-lived state and on a weak transition to a metastable state. We choose the metastable state to be a Rydberg state so that when an atom jumps to the Rydberg state, it inhibits or enhances jumps in the neighboring atoms. This leads to rich spatiotemporal dynamics that are visible in the fluorescence of the strong transition.Comment: 10 page

    The feasibility of conducting an impact evaluation of the Dedicated Drug Court pilot

    Get PDF

    Nonadiabatic electron heat pump

    Full text link
    We investigate a mechanism for extracting heat from metallic conductors based on the energy-selective transmission of electrons through a spatially asymmetric resonant structure subject to ac driving. This quantum refrigerator can operate at zero net electronic current as it replaces hot by cold electrons through two energetically symmetric inelastic channels. We present numerical results for a specific heterostructure and discuss general trends. We also explore the conditions under which the cooling rate may approach the ultimate limit given by the quantum of cooling power.Comment: 4 pages, 3 figures; published version, typos correcte

    Andreev reflection in bosonic condensates

    Full text link
    We study the bosonic analog of Andreev reflection at a normal-superfluid interface where the superfluid is a boson condensate. We model the normal region as a zone where nonlinear effects can be neglected. Against the background of a decaying condensate, we identify a novel contribution to the current of reflected atoms. The group velocity of this Andreev reflected component differs from that of the normally reflected one. For a three-dimensional planar or two-dimensional linear interface Andreev reflection is neither specular nor conjugate.Comment: 5 pages, 3 figures. Text revise

    Anisotropic sub-Doppler laser cooling in dysprosium magneto-optical traps

    Full text link
    Magneto-optical traps (MOTs) of Er and Dy have recently been shown to exhibit population-wide sub-Doppler cooling due to their near degeneracy of excited and ground state Lande g factors. We discuss here an additional, unusual intra-MOT sub-Doppler cooling mechanism that appears when the total Dy MOT cooling laser intensity and magnetic quadrupole gradient increase beyond critical values. Specifically, anisotropically sub-Doppler-cooled cores appear, and their orientation with respect to the quadrupole axis flips at a critical ratio of the MOT laser intensity along the quadrupole axis versus that in the plane of symmetry. This phenomenon can be traced to a loss of the velocity-selective resonance at zero velocity in the cooling force along directions in which the atomic polarization is oriented by the quadrupole field. We present data characterizing this anisotropic laser cooling phenomenon and discuss a qualitative model for its origin based on the extraordinarily large Dy magnetic moment and Dy's near degenerate g factors.Comment: 4 pages, 5 figure

    Two-Level Systems in Evaporated Amorphous Silicon

    Full text link
    In ee-beam evaporated amorphous silicon (aa-Si), the densities of two-level systems (TLS), n0n_{0} and P‾\overline{P}, determined from specific heat CC and internal friction Q−1Q^{-1} measurements, respectively, have been shown to vary by over three orders of magnitude. Here we show that n0n_{0} and P‾\overline{P} are proportional to each other with a constant of proportionality that is consistent with the measurement time dependence proposed by Black and Halperin and does not require the introduction of additional anomalous TLS. However, n0n_{0} and P‾\overline{P} depend strongly on the atomic density of the film (nSin_{\rm Si}) which depends on both film thickness and growth temperature suggesting that the aa-Si structure is heterogeneous with nanovoids or other lower density regions forming in a dense amorphous network. A review of literature data shows that this atomic density dependence is not unique to aa-Si. These findings suggest that TLS are not intrinsic to an amorphous network but require a heterogeneous structure to form

    Coherent Control of Trapped Bosons

    Full text link
    We investigate the quantum behavior of a mesoscopic two-boson system produced by number-squeezing ultracold gases of alkali metal atoms. The quantum Poincare maps of the wavefunctions are affected by chaos in those regions of the phase space where the classical dynamics produces features that are comparable to hbar. We also investigate the possibility for quantum control in the dynamics of excitations in these systems. Controlled excitations are mediated by pulsed signals that cause Stimulated Raman Adiabatic passage (STIRAP) from the ground state to a state of higher energy. The dynamics of this transition is affected by chaos caused by the pulses in certain regions of the phase space. A transition to chaos can thus provide a method of controlling STIRAP.Comment: 17 figures, Appended a paragraph on section 1 and explained details behind the hamiltonian on section
    • …
    corecore