144 research outputs found

    The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare

    Full text link
    Solar flares occur due to the sudden release of energy stored in active-region magnetic fields. To date, the pre-cursors to flaring are still not fully understood, although there is evidence that flaring is related to changes in the topology or complexity of an active region's magnetic field. Here, the evolution of the magnetic field in active region NOAA 10953 was examined using Hinode/SOT-SP data, over a period of 12 hours leading up to and after a GOES B1.0 flare. A number of magnetic-field properties and low-order aspects of magnetic-field topology were extracted from two flux regions that exhibited increased Ca II H emission during the flare. Pre-flare increases in vertical field strength, vertical current density, and inclination angle of ~ 8degrees towards the vertical were observed in flux elements surrounding the primary sunspot. The vertical field strength and current density subsequently decreased in the post-flare state, with the inclination becoming more horizontal by ~7degrees. This behaviour of the field vector may provide a physical basis for future flare forecasting efforts.Comment: Accepted for Publication in Solar Physics. 16 pages, 4 figure

    A nonlinear hydrodynamical approach to granular materials

    Full text link
    We propose a nonlinear hydrodynamical model of granular materials. We show how this model describes the formation of a sand pile from a homogeneous distribution of material under gravity, and then discuss a simulation of a rotating sandpile which shows, in qualitative agreement with experiment, a static and dynamic angle of repose.Comment: 17 pages, 14 figures, RevTeX4; minor changes to wording and some additional discussion. Accepted by Phys. Rev.

    Efficient photoionization for barium ion trapping using a dipole-allowed resonant two-photon transition

    Full text link
    Two efficient and isotope-selective resonant two-photon ionization techniques for loading barium ions into radio-frequency (RF)-traps are demonstrated. The scheme of using a strong dipole-allowed transition at \lambda=553 nm as a first step towards ionization is compared to the established technique of using a weak intercombination line (\lambda=413 nm). An increase of two orders of magnitude in the ionization efficiency is found favoring the transition at 553 nm. This technique can be implemented using commercial all-solid-state laser systems and is expected to be advantageous compared to other narrowband photoionization schemes of barium in cases where highest efficiency and isotope-selectivity are required.Comment: 8 pages, 5 figure

    Transient Magnetic and Doppler Features Related to the White-light Flares in NOAA 10486

    Full text link
    Rapidly moving transient features have been detected in magnetic and Doppler images of super-active region NOAA 10486 during the X17/4B flare of 28 October 2003 and the X10/2B flare of 29 October 2003. Both these flares were extremely energetic white-light events. The transient features appeared during impulsive phases of the flares and moved with speeds ranging from 30 to 50 km s1^{-1}. These features were located near the previously reported compact acoustic \cite{Donea05} and seismic sources \cite{Zharkova07}. We examine the origin of these features and their relationship with various aspects of the flares, {\it viz.}, hard X-ray emission sources and flare kernels observed at different layers - (i) photosphere (white-light continuum), (ii) chromosphere (Hα\alpha 6563\AA), (iii) temperature minimum region (UV 1600\AA), and (iv) transition region (UV 284\AA).Comment: 26 pages, 13 figures, 2 tables, accepted for publication in Solar Physic

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Dark Synergy: Gravitational Lensing and the CMB

    Get PDF
    Power spectra and cross-correlation measurements from the weak gravitational lensing of the cosmic microwave background (CMB) and the cosmic shearing of faint galaxies images will help shed light on quantities hidden from the CMB temperature anisotropies: the dark energy, the end of the dark ages, and the inflationary gravitational wave amplitude. Even with modest surveys, both types of lensing power spectra break CMB degeneracies and they can ultimately improve constraints on the dark energy equation of state w by over an order of magnitude. In its cross correlation with the integrated Sachs-Wolfe effect, CMB lensing offers a unique opportunity for a more direct detection of the dark energy and enables study of its clustering properties. By obtaining source redshifts and cross-correlations with CMB lensing, cosmic shear surveys provide tomographic handles on the evolution of clustering correspondingly better precision on the dark energy equation of state and density. Both can indirectly provide detections of the reionization optical depth and modest improvements in gravitational wave constraints which we compare to more direct constraints. Conversely, polarization B-mode contamination from CMB lensing, like any other residual foreground, darkens the prospects for ultra-high precision on gravitational waves through CMB polarization requiring large areas of sky for statistical subtraction. To evaluate these effects we provide fitting formula for the evolution and transfer function of the Newtonian gravitational potential.Comment: 16 pages, 11 figures submitted to PR

    Co-evolution, opportunity seeking and institutional change: Entrepreneurship and the Indian telecommunications industry 1923-2009

    Get PDF
    "This is an Author's Original Manuscript of an article submitted for consideration in Business History [copyright Taylor & Francis]; Business History is available online at http://www.tandfonline.com/." 10.1080/00076791.2012.687538In this paper, we demonstrate the importance for entrepreneurship of historical contexts and processes, and the co-evolution of institutions, practices, discourses and cultural norms. Drawing on discourse and institutional theories, we develop a model of the entrepreneurial field, and apply this in analysing the rise to global prominence of the Indian telecommunications industry. We draw on entrepreneurial life histories to show how various discourses and discursive processes ultimately worked to generate change and the creation of new business opportunities. We propose that entrepreneurship involves more than individual acts of business creation, but also implies collective endeavours to shape the future direction of the entrepreneurial field

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Global Properties of Solar Flares

    Full text link
    corecore