310 research outputs found

    NRSM 370.R01: Collaboration in Natural Resource Decisions

    Get PDF

    WILD 291.01: Human Dimensions of Wildlife

    Get PDF

    NRSM 574.01: Human Dimensions of Natural Resources

    Get PDF

    Collective Aspects of Mitigating Interactions Between Large Carnivores and Humans

    Get PDF
    Understanding how to coexist with wildlife is of critical importance for successful conservation, particularly for large carnivores, who pose risks to human safety, livestock, and game species. In Montana (USA), black and grizzly bears occur across much of the western half of the state. In particular, grizzly bears are protected by the Endangered Species Act and their populations and ranges are expanding, resulting in increased overlap between humans and bears. Interactions with bears can be mitigated when landowners take certain actions to secure bear attractants – such as using bear resistant garbage cans and feed storage, using electric fences, removing livestock carcasses, and taking down bird feeders in the spring and fall. Few studies have examined what drives uptake of these actions, but factors include perceived risks and benefits and personal experience at the individual level. This research aims to understand how individual and collective aspects drive uptake of actions to secure bear attractants. We administered a mail-back questionnaire to Montana landowners and used the collective interest model to determine the relative effects of collective and individual factors in influencing whether landowners secure bear attractants. We developed logistic regression models for each behavior. Collective aspects that drove behavior included social norms (i.e., what individuals think they should do and what others are doing) and network centrality (i.e., how much social influence an individual has). This research suggests that outreach campaigns that only highlight the risks of large carnivores could be substantially improved by describing the collective aspects of mitigation

    Promoting Healthy Decision-Making via Natural Environment Exposure: Initial Evidence and Future Directions

    Get PDF
    Research within psychology and other disciplines has shown that exposure to natural environments holds extensive physiological and psychological benefits. Adding to the health and cognitive benefits of natural environments, evidence suggests that exposure to nature also promotes healthy human decision-making. Unhealthy decision-making (e.g., smoking, non-medical prescription opioid misuse) and disorders associated with lack of impulse control [e.g., tobacco use, opioid use disorder (OUD)], contribute to millions of preventable deaths annually (i.e., 6 million people die each year of tobacco-related illness worldwide, deaths from opioids from 2002 to 2017 have more than quadrupled in the United States alone). Impulsive and unhealthy decision-making also contributes to many pressing environmental issues such as climate change. We recently demonstrated a causal link between visual exposure to nature (e.g., forests) and improved self-control (i.e., decreased impulsivity) in a laboratory setting, as well as the extent to which nearby nature and green space exposure improves self-control and health decisions in daily life outside of the experimental laboratory. Determining the benefits of nearby nature for self-controlled decision-making holds theoretical and applied implications for the design of our surrounding environments. In this article, we synergize the overarching results of recent research endeavors in three domains including the effects of nature exposure on (1) general health-related decision-making, (2) health and decision-making relevant for application to addiction related processes (e.g., OUD), and (3) environmentally relevant decision-making. We also discuss key future directions and conclusions

    Nature of phase transition(s) in striped phase of triangular-lattice Ising antiferromagnet

    Full text link
    Different scenarios of the fluctuation-induced disordering of the striped phase which is formed at low temperatures in the triangular-lattice Ising model with the antiferromagnetic interaction of nearest and next-to-nearest neighbors are analyzed and compared. The dominant mechanism of the disordering is related to the formation of a network of domain walls, which is characterized by an extensive number of zero modes and has to appear via the first-order phase transition. In principle, this first-order transition can be preceded by a continuous one, related to the spontaneous formation of double domain walls and a partial restoration of the broken symmetry, but the realization of such a scenario requires the fulfillment of rather special relations between the coupling constants.Comment: 10 pages, 7 figures, ReVTeX

    Adaptive capacity beyond the household: a systematic review of empirical social-ecological research

    Get PDF
    The concept of adaptive capacity has received significant attention within social-ecological and environmental change research. Within both the resilience and vulnerability literatures specifically, adaptive capacity has emerged as a fundamental concept for assessing the ability of social-ecological systems to adapt to environmental change. Although methods and indicators used to evaluate adaptive capacity are broad, the focus of existing scholarship has predominately been at the individual- and household- levels. However, the capacities necessary for humans to adapt to global environmental change are often a function of individual and societal characteristics, as well as cumulative and emergent capacities across communities and jurisdictions. In this paper, we apply a systematic literature review and co-citation analysis to investigate empirical research on adaptive capacity that focus on societal levels beyond the household. Our review demonstrates that assessments of adaptive capacity at higher societal levels are increasing in frequency, yet vary widely in approach, framing, and results; analyses focus on adaptive capacity at many different levels (e.g. community, municipality, global region), geographic locations, and cover multiple types of disturbances and their impacts across sectors. We also found that there are considerable challenges with regard to the ‘fit’ between data collected and analytical methods used in adequately capturing the cross-scale and cross-level determinants of adaptive capacity. Current approaches to assessing adaptive capacity at societal levels beyond the household tend to simply aggregate individual- or household-level data, which we argue oversimplifies and ignores the inherent interactions within and across societal levels of decision-making that shape the capacity of humans to adapt to environmental change across multiple scales. In order for future adaptive capacity research to be more practice-oriented and effectively guide policy, there is a need to develop indicators and assessments that are matched with the levels of potential policy applications

    Observations of conduction driven evaporation in the early rise phase of solar flares

    Get PDF
    <p><b>Context:</b> The classical flare picture features a beam of electrons, which were accelerated in a site in the corona, hitting the chromosphere. The electrons are stopped in the dense chromospheric plasma, emitting bremsstrahlung in hard X-rays. The ambient material is heated by the deposited energy and expands into the magnetic flare loops, a process termed chromospheric evaporation. In this view hard X-ray emission from the chromosphere is succeeded by soft-X-ray emission from the hot plasma in the flare loop, the soft X-ray emission being a direct consequence of the impact of the non-thermal particle beam. However, observations of events exist in which a pronounced increase in soft X-ray emission is observed minutes before the onset of the hard X-ray emission. Such pre-flare emission clearly contradicts the classical flare picture.</p> <p><b>Aims:</b> For the first time, the pre-flare phase of such solar flares is studied in detail. The aim is to understand the early rise phase of these events. We want to explain the time evolution of the observed emission by means of alternative energy transport mechanisms such as heat conduction.</p> <p><b>Methods:</b> RHESSI events displaying pronounced pre-flare emission were analyzed in imaging and spectroscopy. The time evolution of images and full sun spectra was investigated and compared to the theoretical expectations from conduction driven chromospheric evaporation. Results. The pre-flare phase is characterized by purely thermal emission from a coronal source with increasing emission measure and density. After this earliest phase, a small non-thermal tail to higher energies appears in the spectra, becoming more and more pronounced. However, images still only display one X-ray source, implying that this non-thermal emission is coronal. The increase of emission measure and density indicates that material is added to the coronal region. The most plausible origin is evaporated material from the chromosphere. Energy provided by a heat flux is capable of driving chromospheric evaporation. We show that the often used classical Spitzer treatment of the conductive flux is not applicable. The conductive flux is saturated. During the preflare-phase, the temperature of the coronal source remains constant or increases. Continuous heating in the corona is necessary to explain this observation.</p> <p><b>Conclusions:</b> The observations of the pre-flare phase of four solar flares are consistent with chromospheric evaporation driven by a saturated heat flux. Additionally, continuous heating in the corona is necessary to sustain the observed temperature.</p&gt
    corecore