35 research outputs found

    STXBP2-R190C Variant in a Patient With Neonatal Hemophagocytic Lymphohistiocytosis (HLH) and G6PD Deficiency Reveals a Critical Role of STXBP2 Domain 2 on Granule Exocytosis

    Get PDF
    Neonatal hemophagocytic lymphohistiocytosis (HLH) is a medical emergency that can be associated with significant morbidity and mortality. Often these patients present with familial HLH (f-HLH), which is caused by gene mutations interfering with the cytolytic pathway of cytotoxic T-lymphocytes (CTLs) and natural killer cells. Here we describe a male newborn who met the HLH diagnostic criteria, presented with profound cholestasis, and carried a maternally inherited heterozygous mutation in syntaxin-binding protein-2 [STXBP2, c.568C\u3eT (p.Arg190Cys)] in addition to a severe pathogenic variant in glucose 6-phosphate dehydrogenase [G6PD, hemizygous c.1153T\u3eC (Cys385Arg)]. Although mutations in STXBP2 gene are associated with f-HLH type 5, the clinical and biological relevance of the p.Arg190Cys mutation identified in this patient was uncertain. To assess its role in disease pathogenesis, we performed functional assays and biochemical and microscopic studies. We found that p.Arg190Cys mutation did not alter the expression or subcellular localization of STXBP2 or STX11, neither impaired the STXBP2/STX11 interaction. In contrast, forced expression of the mutated protein into normal CTLs strongly inhibited degranulation and reduced the cytolytic activity outcompeting the effect of endogenous wild-type STXBP2. Interestingly, arginine 190 is located in a structurally conserved region of STXBP2 where other f-HLH-5 mutations have been identified. Collectively, data strongly suggest that STXBP2-R190C is a deleterious variant that may act in a dominant-negative manner by probably stabilizing non-productive interactions between STXBP2/STX11 complex and other still unknown factors such as the membrane surface or Munc13-4 protein and thus impairing the release of cytolytic granules. In addition to the contribution of STXBP2-R190C to f-HLH, the accompanied G6PD mutation may have compounded the clinical symptoms; however, the extent by which G6PD deficiency has contributed to HLH in our patient remains unclear

    In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs

    Get PDF
    Comment in Lowering the High Cost of Cancer Drugs--III. [Mayo Clin Proc. 2016] Lowering the High Cost of Cancer Drugs--I. [Mayo Clin Proc. 2016] Lowering the High Cost of Cancer Drugs--IV. [Mayo Clin Proc. 2016] In Reply--Lowering the High Cost of Cancer Drugs. [Mayo Clin Proc. 2016] US oncologists call for government regulation to curb drug price rises. [BMJ. 2015

    The genomic landscape of juvenile myelomonocytic leukemia

    Get PDF
    Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 and CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and therefore be candidates for experimental therapies. In addition, there have been few other molecular pathways identified aside from the Ras/MAPK pathway to serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia in order to expand our knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, gene splicing, the polycomb repressive complex 2 (PRC2) and transcription. Importantly, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome

    Successful reduction of high-sustained anti-idursulfase antibody titers by immune modulation therapy in a patient with severe mucopolysaccharidosis type II

    No full text
    We report on a 6 year old boy with severe MPS II undergoing immune modulation therapy due to high IgG antibody titers to IV idursulfase and no significant decline in urinary GAG levels since initiating enzyme replacement therapy. He has complete deficiency of iduronate-2-sulfatase activity due to a submicroscopic deletion of the X chromosome involving the entire I2S gene but not including in the fragile X locus. At 19 months of age, IV idursulfase therapy at the recommended dose of 0.5 mg/kg/week was initiated and then increased to 1.0 mg/kg/week after no observed clinical improvement and no decline in urine GAG level. After one year of ERT at the increased dose, he had no significant decline in urinary GAG excretion and increase of anti-idursulfase IgG antibody titers to 102,000 with complete neutralizing antibodies. In light of the evidence of lack of efficacy of idursulfase therapy, the patient was started on an immune modulation regimen consisting of ofatumumab, bortezomib, methotrexate and IVIG for a 12 week period. Only a slight decrease in IgG titers and urine GAG levels was observed, leading to increased intensity of bortezomib administration and addition of dexamethasone to the regimen, while continuing with the current schedule ofatumumab, IVIG and methotrexate. Over 18 month period of immune modulation therapy, we observed a significant reduction in anti-idursulfase IgG titers and a moderate reduction in urine GAG levels compared to baseline. Modest clinical improvements were observed. Our experience suggests that future MPS II patients with a complete gene deletion may be likely to develop persistent anti-idursulfase antibody titers and may benefit from immune modulation therapy prior to the development of high titer levels

    Ovarian Sex Cord-Stromal Tumors.

    No full text
    Ovarian sex cord-stromal tumors are clinically significant heterogeneous tumors that include several pathologic types. These tumors are often found in adolescents and young adults and can present with hormonal manifestations as well as signs and symptoms of a pelvic mass. Serum tumor markers may assist in preoperative diagnosis and surveillance. Several subtypes are associated with genetic predisposition, including those observed in patients with Peutz-Jegher syndrome. Recent studies have elucidated the relationship between Sertoli-Leydig cell tumors and DICER1 mutations. When classified as International Federation of Gynecology and Obstetrics stage Ia, most subtypes may be treated with surgery alone. Higher stage or recurrent tumors have variable prognoses that range from a usually rapid course in poorly differentiated Sertoli-Leydig cell tumor to an often prolonged course in adult granulosa cell tumors. New understanding of the molecular pathogenesis of these tumors may pave the way for novel therapeutics

    Cell- and developmental stage-specific Dicer1 ablation in the lung epithelium models cystic pleuropulmonary blastoma.

    No full text
    Inherited syndromes provide unique opportunities to identify key regulatory mechanisms governing human disease. We previously identified germline loss-of-function DICER1 mutations in a human syndrome defined by the childhood lung neoplasm, pleuropulmonary blastoma (PPB), which arises during lung development. DICER1 regulates many biological processes critical in development and disease pathogenesis. Significant challenges in defining the role of DICER1 in human disease are identifying cause-effect relationships and generating manipulatable systems that model the complexity of organ development and disease pathogenesis. Herein we report generation of a murine model for PPB and demonstrate that precise temporal and cell type-specific Dicer1 ablation is necessary and sufficient for development of cystic lungs that histologically and phenotypically model PPB. Dicer1 ablation in the distal airway epithelium during early stages of lung development resulted in a cystic lung phenotype indistinguishable from PPB whereas DICER1 function was not required for development of the proximal airway epithelium or during later stages of organogenesis. Mechanistic studies demonstrate that Dicer1 loss results in epithelial cell death, followed by cystic airway dilation, accompanied by epithelial and mesenchymal proliferation. These studies define precise temporal and epithelial cell type-specific DICER1 functions in the developing lung and demonstrate that loss of these DICER1 functions is sufficient for development of cystic PPB. These results also provide evidence that PPB arises through a novel mechanism of non-cell-autonomous tumor initiation, wherein the genetic abnormality initiating the neoplasm does not occur in the cells that ultimately transform, but rather occurs in a benign-appearing epithelial cell component that predisposes underlying mesenchymal cells to malignant transformation
    corecore