5,617 research outputs found

    Spin-1/2 sub-dynamics nested in the quantum dynamics of two coupled qutrits

    Full text link
    In this paper we investigate the quantum dynamics of two spin-1 systems, S⃗1\vec{\textbf{S}}_1 and S⃗2\vec{\textbf{S}}_2, adopting a generalized (S⃗1+S⃗2)2(\vec{\textbf{S}}_1+\vec{\textbf{S}}_2)^2-nonconserving Heisenberg model. We show that, due to its symmetry property, the nine-dimensional dynamics of the two qutrits exactly decouples into the direct sum of two sub-dynamics living in two orthogonal four- and five-dimensional subspaces. Such a reduction is further strengthened by our central result consisting in the fact that in the four-dimensional dynamically invariant subspace, the two qutrits quantum dynamics, with no approximations, is equivalent to that of two non interacting spin 1/2's. The interpretative advantages stemming from such a remarkable and non-intuitive nesting are systematically exploited and various intriguing features consequently emerging in the dynamics of the two qutrits are deeply scrutinised. The possibility of exploiting the dynamical reduction brought to light in this paper for exactly treating as well time-dependent versions of our Hamiltonian model is briefly discussed.Comment: 14 pages, 11 figures; Last two authors name corrected, corrected typos, Fig. 11 changed (same result

    Microscopic description of dissipative dynamics of a level crossing transition

    Full text link
    We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak dissipation our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model our approach makes it possible to study the dependence of the system dynamics on the temperature of the environment. In the limit of very high temperature we find that the dynamics is characterized by a very strong dynamical decoupling of the initial state - temperature-induced quantum Zeno effect.Comment: 6 pages, 4 figure

    Definition of smolder experiments for Spacelab

    Get PDF
    The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities

    Stimulated Raman adiabatic passage in an open quantum system: Master equation approach

    Get PDF
    A master equation approach to the study of environmental effects in the adiabatic population transfer in three-state systems is presented. A systematic comparison with the non-Hermitian Hamiltonian approach [N. V. Vitanov and S. Stenholm, Phys. Rev. A {\bf 56}, 1463 (1997)] shows that in the weak coupling limit the two treatments lead to essentially the same results. Instead, in the strong damping limit the predictions are quite different: in particular the counterintuitive sequences in the STIRAP scheme turn out to be much more efficient than expected before. This point is explained in terms of quantum Zeno dynamics.Comment: 11 pages, 4 figure

    ‘Esprit de corps’: Towards collaborative integration of pharmacists and nurses into antimicrobial stewardship programmes in South Africa

    Get PDF
    With the global threat of antimicrobial resistance now more emergent than ever, there should be wider collaboration between members of the multidisciplinary healthcare team. This article proposes possible ways of engagement between the pharmacist, nurse and doctor. The pharmacist and nurse are placed in an ideal position through united efforts (camaraderie) to redirect healthcare towards improved patient outcomes while also reducing antimicrobial resistance

    Two-qubit entanglement generation through non-Hermitian Hamiltonians induced by repeated measurements on an ancilla

    Full text link
    In contrast to classical systems, actual implementation of non-Hermitian Hamiltonian dynamics for quantum systems is a challenge because the processes of energy gain and dissipation are based on the underlying Hermitian system-environment dynamics that is trace preserving. Recently, a scheme for engineering non-Hermitian Hamiltonians as a result of repetitive measurements on an anicillary qubit has been proposed. The induced conditional dynamics of the main system is described by the effective non-Hermitian Hamiltonian arisng from the procedure. In this paper we demonstrate the effectiveness of such a protocol by applying it to physically relevant multi-spin models, showing that the effective non-Hermitian Hamiltonian drives the system to a maximally entangled stationary state. In addition, we report a new recipe to construct a physical scenario where the quantum dynamics of a physical system represented by a given non-Hermitian Hamiltonian model may be simulated. The physical implications and the broad scope potential applications of such a scheme are highlighted

    Zeno-like phenomena in STIRAP processes

    Get PDF
    The presence of a continuous measurement quantum Zeno effect in a Stimulated Rapid Adiabatic Passage is studied, exploring in detail a sort of self-competition of the damping, which drives the system toward a loss of population and, at the same time, realizes the conditions to optimize the adiabatic passag

    Two-qubit entanglement generation through non-hermitian hamiltonians induced by repeated measurements on an ancilla

    Get PDF
    In contrast to classical systems, actual implementation of non-Hermitian Hamiltonian dynamics for quantum systems is a challenge because the processes of energy gain and dissipation are based on the underlying Hermitian system–environment dynamics, which are trace preserving. Recently, a scheme for engineering non-Hermitian Hamiltonians as a result of repetitive measurements on an ancillary qubit has been proposed. The induced conditional dynamics of the main system is described by the effective non-Hermitian Hamiltonian arising from the procedure. In this paper, we demonstrate the effectiveness of such a protocol by applying it to physically relevant multi-spin models, showing that the effective non-Hermitian Hamiltonian drives the system to a maximally entangled stationary state. In addition, we report a new recipe to construct a physical scenario where the quantum dynamics of a physical system represented by a given non-Hermitian Hamiltonian model may be simulated. The physical implications and the broad scope potential applications of such a scheme are highlighted

    Polyelectrolyte Multilayering on a Charged Planar Surface

    Full text link
    The adsorption of highly \textit{oppositely} charged flexible polyelectrolytes (PEs) on a charged planar substrate is investigated by means of Monte Carlo (MC) simulations. We study in detail the equilibrium structure of the first few PE layers. The influence of the chain length and of a (extra) non-electrostatic short range attraction between the polycations and the negatively charged substrate is considered. We show that the stability as well as the microstructure of the PE layers are especially sensitive to the strength of this latter interaction. Qualitative agreement is reached with some recent experiments.Comment: 28 pages; 11 (main) Figs - Revtex4 - Higher resolution Figs can be obtained upon request. To appear in Macromolecule

    Dzyaloshinskii-Moriya and dipole-dipole interactions affect coupling-based Landau-Majorana-Stückelberg-Zener transitions

    Get PDF
    It has been theoretically demonstrated that two spins (qubits or qutrits), coupled by exchange interaction only, undergo a coupling-based joint Landau-Majorana-Stuckelberg-Zener (LMSZ) transition when a linear ramp acts on one of the two spins. Such a transition, under appropriate conditions on the parameters, drives the two-spin system toward a maximally entangled state. In this paper, effects on the quantum dynamics of the two qudits, stemming from the Dzyaloshinskii-Moriya (DM) and dipole-dipole (d-d) interactions, are investigated qualitatively and quantitatively. The enriched Hamiltonian model of the two spins shares with the previous microscopic one the same C2 symmetry which once more brings about an exact treatment of the new quantum dynamical problem. This paper transparently reveals that the DM and d-d interactions generate independent, enhancing or hindering, modifications in the dynamical behavior predicted for the two spins coupled exclusively by the exchange interaction. It is worthwhile to notice that, on the basis of the theory here developed, the measurement of the time evolution of the magnetization in a controlled LMSZ scenario can furnish information on the relative weights of the three kinds of couplings describing the spin system. This possibility is very important since it allows us in principle to legitimate the choice of the microscopic model to be adopted in a given physical scenario
    • …
    corecore