26 research outputs found

    Radiation enhancement and "temperature" in the collapse regime of gravitational scattering

    Full text link
    We generalize the semiclassical treatment of graviton radiation to gravitational scattering at very large energies smP\sqrt{s}\gg m_P and finite scattering angles Θs\Theta_s, so as to approach the collapse regime of impact parameters bbcR2Gsb \simeq b_c \sim R\equiv 2G\sqrt{s}. Our basic tool is the extension of the recently proposed, unified form of radiation to the ACV reduced-action model and to its resummed-eikonal exchange. By superimposing that radiation all-over eikonal scattering, we are able to derive the corresponding (unitary) coherent-state operator. The resulting graviton spectrum, tuned on the gravitational radius RR, fully agrees with previous calculations for small angles Θs1\Theta_s\ll 1 but, for sizeable angles Θs(b)Θc=O(1)\Theta_s(b)\leq \Theta_c = O(1) acquires an exponential cutoff of the large ωR\omega R region, due to energy conservation, so as to emit a finite fraction of the total energy. In the approach-to-collapse regime of bbc+b\to b_c^+ we find a radiation enhancement due to large tidal forces, so that the whole energy is radiated off, with a large multiplicity NGs1\langle N \rangle\sim Gs \gg 1 and a well-defined frequency cutoff of order R1R^{-1}. The latter corresponds to the Hawking temperature for a black hole of mass notably smaller than s\sqrt{s}.Comment: 5 pages, 2 figures, talk presented at the European Physical Society Conference on High Energy Physics, 5-12 July, Venice, Ital

    Capturing the COVID-19 crisis through public health and social measures data science

    Get PDF
    In response to COVID-19, governments worldwide are implementing public health and social measures (PHSM) that substantially impact many areas beyond public health. The new field of PHSM data science collects, structures, and disseminates data on PHSM; here, we report the main achievements, challenges, and focus areas of this novel field of research

    Novel bacterial molybdenum and tungsten enzymes : three-dimensional structure, spectroscopy, and reaction mechanism

    No full text
    The molybdenum enzymes 4-hydroxybenzoyl-CoA reductase and pyrogallol-phloroglucinol transhydroxylase and the tungsten enzyme acetylene hydratase catalyze reductive dehydroxylation reactions, i.e., transhydroxylation between phenolic residues and the addition of water to a triple bond. Such activities are unusual for this class of enzymes, which carry either a mononuclear Mo or W center. Crystallization and subsequent structural analysis by high-resolution X-ray crystallography has helped to resolve the reaction centers of these enzymes to a degree that allows us to understand the interaction of the enzyme and the respective substrate(s) in detail, and to develop a concept for the respective reaction mechanism, at least in two cases

    Crystal structure of pyrogallol phloroglucinoltranshydroxylase, an Mo enzyme capable ofintermolecular hydroxyl transfer between phenols

    No full text
    The Mo enzyme transhydroxylase from the anaerobic microorganism Pelobacter acidigallici catalyzes the conversion of pyrogallol to phloroglucinol. Such trihydroxybenzenes and their derivatives represent important building blocks of plant polymers. None of the transferred hydroxyl groups originates from water during transhydroxylation; instead a cosubstrate, such as 1,2,3,5-tetrahydroxybenzene, is used in a reaction without apparent electron transfer. Here, we report on the crystal structure of the enzyme in the reduced Mo(IV) state, which we solved by single anomalousdiffraction technique. It represents the largest structure (1,149 amino acid residues per molecule, 12 independent molecules per unit cell), which has been solved so far by single anomalousdiffraction technique. Tranhydroxylase is a heterodimer, with the active Mo molybdopterin guanine dinucleotide (MGD)2 site in the α-subunit, and three [4FeO4S] centers in the β-subunit. The latter subunit carries a seven-stranded, mainly antiparallel β-barrel domain. We propose a scheme for the transhydroxylation reaction based on 3D structures of complexes of the enzyme with various polyphenols serving either as substrate or inhibitor

    Crystallization and preliminary X-ray analysis of the molybdenum-dependent pyrogallol-phloroglucinol transhydroxylase of Pelobacter acidigallici

    No full text
    Crystals of the molybdo-/iron±sulfur protein pyrogallol:phloroglucinol hydroxyltransferase (transhydroxylase; EC 1.97.1.2) from Pelobacter acidigallici were grown by vapour diffusion in an N2/H2 atmosphere using polyethylene glycol as a precipitant. In this microorganism, transhydroxylase converts pyrogallol to phloroglucinol in a unique reaction without oxygen transfer from water.Growth of crystals suitable for X-ray analysis was strongly dependent on the presence of dithionite as a reducing agent. The crystals belonged to space group P1 and MAD data were collected on the iron K edge to resolutions higher than 2.5
    corecore