371 research outputs found

    Beyond War Crimes: Denazification, National Security and American Deportation and Internment of SS Agents after World War II

    Get PDF
    Streaming video requires RealPlayer to view.The University Archives has determined that this item is of continuing value to OSU's history.David Messenger is assistant professor of history and graduate director for international studies at the University of Wyoming. He is currently a visiting scholar at the Mershon Center for International Security Studies. During his time at Mershon, he will be preparing a study of Nazi party agents repatriated from Spain and Portugal to Germany in 1946 and 1947 following American and British investigations into their wartime and postwar activities. Messenger's research focuses on the transition from war to peace in Europe following the Second World War. He is particularly interested in how the international system, domestic politics, and societies at large dealt with issues of justice and democratization following the experience of Nazi atrocities and the collaboration of many non-Germans in these crimes over the course of the war. Messenger has focused his work on examining the Spanish dictatorship of Gen. Francisco Franco as one place, on the periphery of the war, where themes of collaboration, justice, and continuity raise some interesting questions. His first book, L’Espagne RΓ©publicaine: French Policy and Spanish Republicanism in Liberated France was published in 2008 by Sussex Academic Press. He has held fellowships from the Government of Spain and the Center for Advanced Holocaust Studies at the United States Holocaust Memorial Museum in Washington, D.C.Ohio State University. Mershon Center for International Security StudiesEvent Web page, streaming video, event photo

    Is faster still better in therapeutic hypothermia?

    Get PDF
    The rapid institution of therapeutic hypothermia after cardiac arrest has become an accepted practice. In the previous issue of Critical Care, Haugk and colleagues present a retrospective analysis of 13 years of experience with therapeutic hypothermia at their center that suggests an association between rate of cooling and less favorable neurological outcomes. The association most likely reflects easier cooling in patients more severely brain injured by their initial cardiac arrest, and should not lead clinicians to abandon or slow their efforts to achieve post-resuscitative cooling

    Metagenomic domain substitution for the high-throughput creation of non-ribosomal peptide analogues

    Get PDF
    Please click Additional Files below to see the full abstract

    Direct Estimation of Parameters in ODE Models Using WENDy: Weak-form Estimation of Nonlinear Dynamics

    Full text link
    We introduce the Weak-form Estimation of Nonlinear Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs. Without relying on any numerical differential equation solvers, WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise. For low dimensional systems with modest amounts of data, WENDy is competitive with conventional forward solver-based nonlinear least squares methods in terms of speed and accuracy. For both higher dimensional systems and stiff systems, WENDy is typically both faster (often by orders of magnitude) and more accurate than forward solver-based approaches. The core mathematical idea involves an efficient conversion of the strong form representation of a model to its weak form, and then solving a regression problem to perform parameter inference. The core statistical idea rests on the Errors-In-Variables framework, which necessitates the use of the iteratively reweighted least squares algorithm. Further improvements are obtained by using orthonormal test functions, created from a set of C-infinity bump functions of varying support sizes. We demonstrate the high robustness and computational efficiency by applying WENDy to estimate parameters in some common models from population biology, neuroscience, and biochemistry, including logistic growth, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark model. Software and code for reproducing the examples is available at (https://github.com/MathBioCU/WENDy).Comment: 28 pages, 16 figure

    Measurements of the Young’s modulus of hydroxide catalysis bonds, and the effect on thermal noise in ground-based gravitational wave detectors

    Get PDF
    With the outstanding results from the detection and observation of gravitational waves from coalescing black holes and neutron star inspirals, it is essential that pathways to further improve the sensitivities of the LIGO and VIRGO detectors are explored. There are a number of factors that potentially limit the sensitivities of the detectors. One such factor is thermal noise, a component of which results from the mechanical loss in the bond material between the silica fibre suspensions and the test mass mirrors. To calculate its magnitude, the Young’s modulus of the bond material has to be known with reasonable accuracy. In this paper we present a new combination of ultrasonic technology and Bayesian analysis to measure the Young’s modulus of hydroxide catalysis bonds between fused silica substrates. Using this novel technique, we measure the bond Young’s modulus to be 18.5 Β± 2.0 2.3     GPa . We show that by applying this value to thermal noise models of bonded test masses with suitable attachment geometries, a reduction in suspension thermal noise consistent with an overall design sensitivity improvement allows a factor of 5 increase in event rate to be achieved

    Impact of UV light on the plant cell wall, methane emissions and ROS production

    Get PDF
    This study presents the first attempt to combine the fields of ultraviolet (UV) photobiology, plant cell wall biochemistry, aerobic methane production and reactive oxygen species (ROS) mechanisms to investigate the effect of UV radiation on vegetation foliage. Following reports of a 17% increase in decomposition rates in oak (Quercus robur) due to increased UV, which were later ascribed to changes in cell wall carbohydrate extractability, this study investigated the effects of decreased UV levels on ash (Fraxinus excelsior), a fast-growing deciduous tree species. A field experiment was set up in Surrey, UK, with ash seedlings growing under polytunnels made of plastics chosen for the selective transmission of either all UV wavelengths, UV-A only, or no UV. In a subsequent field decomposition experiment on end-of-season leaves, a significant increase of 10% in decomposition rate was found after one year due to removal of UV-B. However, no significant changes in cell wall composition were found, and a sequential extraction of carbohydrate with different extractants suggested no effects of the UV treatments on cell wall structure. Meanwhile, the first observations of aerobic production of methane from vegetation were reported. Pectin, a key cell wall polysaccharide, was identified as a putative source of methane, but no mechanism was suggested for this production. This study therefore tested the effect of UV irradiation on methane emissions from pectin. A linear response of methane emissions against UV irradiation was found. UV-irradiation of de-esterified pectin produced no methane, demonstrating esters (probably methyl esters) to be the source of the observed methane. Addition of ROS-scavengers significantly decreased emissions from pectin, while addition of ROS without UV produced large quantities of methane. Therefore, this study proposes that UV light is generating ROS which are then attacking methyl esters to create methane. The study also demonstrates that this mechanism has the potential to generate several types of methyl halides. These findings may have implications for the global methane budget. In an attempt to demonstrate ROS generation in vivo by UV irradiation, radio-labelling techniques were developed to detect the presence of oxo groups, a product of carbohydrate attack by ROS. Using NaB3H4, the polysaccharides of ash leaflets from the field experiment were radio-labelled, but did not show any significant decrease in oxo groups due to UV treatments. However, UV-irradiation of lettuce leaves showed a significant increase in radio-labelling, suggesting increased UV irradiation caused an increase in the production of ROS. The study shows that the use of this radio-labelling technique has the potential to detect changes in ROS production due to changes in UV levels and could be used to demonstrate a link between ROS levels and methane emissions
    • …
    corecore