38 research outputs found

    Effects of fluoxetine schock loadings in a aerobic granular sludge sequencing batch reactor

    Get PDF
    Pharmaceuticals have received increasing attention as emerging organic pollutants due to their frequent occurrence in the environment and potential adverse effects on ecossistems and to human health. Pharmaceuticals may not be completely metabolized in the human body and can enter municipal sewage systems as the parent drug and as their “biologically active” metabolites. Some of these compounds cannot be easily removed at wastewater treatment plants (WWTPs) [1]. Fluoxetine (FLX) is a chiral fluorinated pharmaceutical indicated mainly for treatment of depression and is one of the most dispensed drugs in the world. There is a clear evidence of environmental contamination with this drug and its active metabolite norfluoxetine (NFLX) [2]. Granular sludge sequencing batch reactors (SBR) constitute a promising technology for the treatment of effluents containing micropollutants. The main biological processes occurring in wastewater treatment plants - COD, N and P removal - can be inhibited by these pollutants. This study focused on the effect of FLX on the performance of granular sludge SBR and on the diversity of the microbial population under continuous and intermittent feeding of the compound. The COD removal was not markedly affected by FLX shock loads. Ammonium removal was initially affected but after ca. 20 days of FLX feeding, NH4+ was not detected in the treated effluent – maximum of 0.03 mM – indicating that ammonia oxidizing bacteria (AOB) became adapted to the presence of FLX. Nitrite was also practically not detected in the treated effluent - maximum of 0.01 mM - indicating that nitrite oxidizing bacteria (NOB) were not inhibited by the presence of the FLX, whereas nitrate accumulated in the effluent, indicating that denitrification was affected. Phosphate removal was markedly affected in the beginning of FLX feeding showing a gradual adaptation to the presence of FLX, being practically not detected in the treated effluent (maximum of 0.04 mM) after 70 days. There was no evidence of FLX biodegradation. Changes in the bacterial community from aerobic granules were examined using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA. Samples taken before starting the shock loadings with FLX clearly shift from other samples. Moreover, two main branches separate the samples taken during continuous FLX feeding from samples taken during intermittent FLX feeding

    DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1

    Get PDF
    Mutations in SWI/SNF genes are amongst the most common across all human cancers, but efficient therapeutic approaches that exploit vulnerabilities caused by SWI/SNF mutations are currently lacking. Here, we show that the SWI/SNF ATPases BRM/SMARCA2 and BRG1/SMARCA4 promote the expression of p62/GTF2H1, a core subunit of the transcription factor IIH (TFIIH) complex. Inactivation of either ATPase subunit downregulates GTF2H1 and therefore compromises TFIIH stability and function in transcription and nucleotide excision repair (NER). We also demonstrate that cells with permanent BRM or BRG1 depletion have the ability to restore GTF2H1 expression. As a consequence, the sensitivity of SWI/SNF-deficient cells to DNA damag

    Spatial and Temporal Variations in the Annual Pollen Index Recorded by Sites Belonging to the Portuguese Aerobiology Network

    Get PDF
    This study presents the findings of a 10-year survey carried out by the Portuguese Aerobiology Network (RPA) at seven pollen-monitoring stations: five mainland stations (Oporto, Coimbra, Lisbon, Évora and Portimão) and two insular stations [Funchal (Madeira archipelago) and Ponta Delgada (Azores archipelago)]. The main aim of the study was to examine spatial and temporal variations in the Annual Pollen Index (API) with particular focus on the most frequently recorded pollen types. Pollen monitoring (2003–2012) was carried out using Hirst-type volumetric spore traps, following the minimum recommendations proposed by the European Aerobiology Society Working Group on Quality Control. Daily pollen data were examined for similarities using the Kruskal–Wallis nonparametric test and multivariate regression trees. Simple linear regression analysis was used to describe trends in API. The airborne pollen spectrum at RPA stations is dominated by important allergenic pollen types such as Poaceae, Olea and Urticaceae. Statistically significant differences were witnessed in the API recorded at the seven stations. Mean API is higher in the southern mainland cities, e.g. Évora, Lisbon and Portimão, and lower in insular and littoral cities. There were also a number of significant trends in API during the 10-year study. This report identifies spatial and temporal variations in the amount of airborne pollen recorded annually in the Portuguese territory. There were also a number of significant changes in API, but no general increases in the amount of airborne pollen

    Iron Determination in Natural Waters Using a Synthesised 3-Hydroxy-4-Pyridione Ligand in a Newly Developed Microfluidic Paper-Based Device

    Get PDF
    This work describes the development of an iron sensor based on a microfluidic paper-based technique, to attain iron quantification in natural waters. A new water-soluble naphthalene-3-hydroxy-4-pyridione ligand was used as a colour reagent, as it formed an orange complex with iron. As a newly described ligand, several chemical and physical parameters, namely, the sample and reagent volumes and reagent concentrations, were studied related to the formation of the coloured complex. The microfluidic paper-based analytical device (μPAD) assembly, namely, the use of different types of filter paper and different numbers of layers, was developed to obtain the best performance. Under the optimal conditions, a linear correlation was obtained in the range of 0.25–2.00 mg/L of iron, with a minimum detectable value of 0.07 mg/L. The proposed μPAD method was validated by an analysis of the certified samples and by a comparison of the tested water samples with the inductively coupled plasma (ICP) results (RE < 10%). Then, the μPAD device was successfully applied to the determination of iron in tap water, well water, river water, and seawater, with no need for any prior sample pre-treatment; recovery studies were also performed (average = 100.3% with RSD = 4.2%)

    Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach

    No full text
    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. SIGNIFICANCE: Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially involved in sea urchin adhesion, is not only highly expressed in tube feet discs, but is a genuine component of the secreted adhesive

    Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    No full text
    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives

    Aerobic granular sludge sequencing batch reactor performance under fluorinated pharmaceuticals shock loadings

    Get PDF
    The widespread usage of pharmaceuticals is of increasing concern. Aerobic granular sludge sequencing batch reactors (AGS-SBR) constitute a promising technology for the treatment of wastewaters, however how the removal of carbon and nutrients can be affected by such micropollutants is largely unknown. This study evaluates the impact of different fluorinated drugs (ofloxacin, norfloxacin, ciprofloxacin and fluoxetine) on the performance of an AGS-SBR. During 468 days, a sequence of intermittent, alternating and/or continuous shock loads of pharmaceuticals were apllied to an AGS-SBR and the effects on the main biological processes were evaluated. Here we report on the effect of fluoroquinolones on reactor performnce. The organic removal, measured by COD, was not markedly affected by pharmaceuticals shock loads. Ammonium and nitrite were practically not detected in the bioreactor effluent indicating that the presence of the pharmaceuticals did not inhibit nitrification, whereas accumulation of nitrate in the effluent was observed, indicating that denitrification was affected. Phosphate removal was affected to some extent. There was no evidence of biodegradation whereas adsorption of the target pharmaceuticals to the AGS was observed, which were gradually released into the medium after withdrawal from the inlet stream

    Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor

    No full text
    Fluoxetine (FLX) is a chiral fluorinated pharmaceutical mainly indicated for treatment of depression and is one of the most distributed drugs. There is a clear evidence of environmental contamination with this drug. Aerobic granular sludge sequencing batch reactors constitute a promising technology for wastewater treatment; however the removal of carbon and nutrients can be affected by micropollutants. In this study, the fate and effect of FLX on reactor performance and on microbial population were investigated. FLX adsorption/desorption to the aerobic granules was observed. FLX shock loads (<= 4 mu M) did not show a significant effect on the COD removal. Ammonium removal efficiency decreased in the beginning of first shock load, but after 20 days, ammonia oxidizing bacteria became adapted. The nitrite concentration in the effluent was practically null indicating that nitrite oxidizing bacteria was not inhibited, whereas, nitrate was accumulated in the effluent, indicating that denitrification was affected. Phosphate removal was affected at the beginning showing a gradual adaptation, and the effluent concentration was <0.04 mM after 70 days. A shift in microbial community occurred probably due to FIX exposure, which induced adaptation/restructuration of the microbial population. This contributed to the robustness of the reactor, which was able to adapt to the FLX load.info:eu-repo/semantics/publishedVersio
    corecore