3 research outputs found

    Inter-Kingdom Signaling of Stress Hormones: Sensing, Transport and Modulation of Bacterial Physiology

    No full text
    International audienceProkaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology. Among them, catecholamines hormones epinephrine/norepinephrine, released during stress and physical effort, or used therapeutically as inotropes have been described to affect bacterial behaviors (i.e., motility, biofilm formation, virulence) of various Gram-negative bacteria (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Vibrio sp.). More recently, these molecules were also shown to influence the physiology of some Gram-positive bacteria like Enterococcus faecalis. In E. coli and S. enterica , the stress-associated mammalian hormones epinephrine and norepinephrine trigger a signaling cascade by interacting with the QseC histidine sensor kinase protein. No catecholamine sensors have been well described yet in other bacteria. This review aims to provide an up to date report on catecholamine sensors in eukaryotes and prokaryotes, their transport, and known effects on bacteria

    Microbial Biological Control of Fungi Associated with Grapevine Trunk Diseases: A Review of Strain Diversity, Modes of Action, and Advantages and Limits of Current Strategies

    No full text
    Grapevine trunk diseases (GTDs) are currently among the most important health challenges for viticulture in the world. Esca, Botryosphaeria dieback, and Eutypa dieback are the most current GTDs caused by fungi in mature vineyards. Their incidence has increased over the last two decades, mainly after the ban of sodium arsenate, carbendazim, and benomyl in the early 2000s. Since then, considerable efforts have been made to find alternative approaches to manage these diseases and limit their propagation. Biocontrol is a sustainable approach to fight against GTD-associated fungi and several microbiological control agents have been tested against at least one of the pathogens involved in these diseases. In this review, we provide an overview of the pathogens responsible, the various potential biocontrol microorganisms selected and used, and their origins, mechanisms of action, and efficiency in various experiments carried out in vitro, in greenhouses, and/or in vineyards. Lastly, we discuss the advantages and limitations of these approaches to protect grapevines against GTDs, as well as the future perspectives for their improvement
    corecore