12 research outputs found

    Di-(2-ethylhexyl) Phthalate-Induced Hippocampus-Derived Neural Stem Cells Proliferation

    Get PDF
    The brain and spinal cord have a limited capacity for self-repair under damaged conditions. One of the best options to overcome these limitations involves the use of phytochemicals as potential therapeutic agents. In this study, we have aimed to investigate the effects of di-(2-ethylhexyl) phthalate (DEHP) on hippocampus-derived neural stem cells (NSCs) proliferation to search phytochemical candidates for possible treatment of neurological diseases using endogenous capacity. In this experimental study, neonatal rat hippocampus-derived NSCs were cultured and treated with various concentrations of DEHP (0, 100, 200, 400 and 600 mu M) and Cirsium vulgare (C. vulgare) hydroethanolic extract (0, 200, 400, 600, 800 and 1000 mu g/ml) for 48 hours under in vitro conditions. Cell proliferation rates and quantitative Sox2 gene expression were evaluated using MTT assay and real-time reverse transcription polymerase chain reaction (RT-PCR). We observed the highest average growth rate in the 400 mu M DEHP and 800 mu g/ml C. vulgare extract treated groups. Sox2 expression in the DEHP-treated NSCs significantly increased compared to the control group. Gas chromatography/mass spectrometry (GC/MS) results demonstrated that the active ingredients that naturally occurred in the C. vulgare hydroethanolic extract were 2-ethyl-1-hexanamine, n-heptacosane, 1-cyclopentane-carboxylic acid, 1-heptadecanamine, 2,6-octadien-1-ol, 2,6,10,14,18,22-tetracosahexaene, and DEHP. DEHP profoundly stimulated NSCs proliferation through Sox2 gene overexpression. These results provide and opportunity for further use of the C. vulgure phytochemicals for prevention and/or treatment of neurological diseases via phytochemical mediated-proliferation of endogenous adult NSCs

    Prevalence and molecular characterization of Glucose-6-Phosphate dehydrogenase deficient variants among the Kurdish population of Northern Iraq

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucose-6-Phosphate dehydrogenase (G6PD) is a key enzyme of the pentose monophosphate pathway, and its deficiency is the most common inherited enzymopathy worldwide. G6PD deficiency is common among Iraqis, including those of the Kurdish ethnic group, however no study of significance has ever addressed the molecular basis of this disorder in this population. The aim of this study is to determine the prevalence of this enzymopathy and its molecular basis among Iraqi Kurds.</p> <p>Methods</p> <p>A total of 580 healthy male Kurdish Iraqis randomly selected from a main regional premarital screening center in Northern Iraq were screened for G6PD deficiency using methemoglobin reduction test. The results were confirmed by quantitative enzyme assay for the cases that showed G6PD deficiency. DNA analysis was performed on 115 G6PD deficient subjects, 50 from the premarital screening group and 65 unrelated Kurdish male patients with documented acute hemolytic episodes due to G6PD deficiency. Analysis was performed using polymerase chain reaction/restriction fragment length polymorphism for five deficient molecular variants, namely G6PD Mediterranean (563 C→T), G6PD Chatham (1003 G→A), G6PD A- (202 G→A), G6PD Aures (143 T→C) and G6PD Cosenza (1376 G→C), as well as the silent 1311 (C→T) mutation.</p> <p>Results</p> <p>Among 580 random Iraqi male Kurds, 63 (10.9%) had documented G6PD deficiency. Molecular studies performed on a total of 115 G6PD deficient males revealed that 101 (87.8%) had the G6PD Mediterranean variant and 10 (8.7%) had the G6PD Chatham variant. No cases of G6PD A-, G6PD Aures or G6PD Cosenza were identified, leaving 4 cases (3.5%) uncharacterized. Further molecular screening revealed that the silent mutation 1311 was present in 93/95 of the Mediterranean and 1/10 of the Chatham cases.</p> <p>Conclusions</p> <p>The current study revealed a high prevalence of G6PD deficiency among Iraqi Kurdish population of Northern Iraq with most cases being due to the G6PD Mediterranean and Chatham variants. These results are similar to those reported from neighboring Iran and Turkey and to lesser extent other Mediterranean countries.</p

    Molecular characterization of glucose-6-phosphate dehydrogenase deficient variants in Baghdad city - Iraq

    Get PDF
    Background: Although G6PD deficiency is the most common genetically determined blood disorder among Iraqis, its molecular basis has only recently been studied among the Kurds in North Iraq, while studies focusing on Arabs in other parts of Iraq are still absent. Methods: A total of 1810 apparently healthy adult male blood donors were randomly recruited from the national blood transfusion center in Baghdad. They were classified into G6PD deficient and non-deficient individuals based on the results of methemoglobin reduction test (MHRT), with confirmation of deficiency by subsequent enzyme assays. DNA from deficient individuals was studied using a polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) for four deficient molecular variants, namely G6PD Mediterranean (563 C®T), Chatham (1003 G®A), A- (202 G®A) and Aures (143 T®C). A subset of those with the Mediterranean variant, were further investigated for the 1311 (C®T) silent mutation. Results: G6PD deficiency was detected in 109 of the 1810 screened male individuals (6.0%). Among 101 G6PD deficient males molecularly studied, the Mediterranean mutation was detected in 75 cases (74.3%), G6PD Chatham in 5 cases (5.0%), G6PD A- in two cases (2.0%), and G6PD Aures in none. The 1311 silent mutation was detected in 48 out of the 51 G6PD deficient males with the Mediterranean variant studied (94.1%). Conclusions: Three polymorphic variants namely: the Mediterranean, Chatham and A-, constituted more than 80% of G6PD deficient variants among males in Baghdad. Iraq. This observation is to some extent comparable to othe

    Immunomodulatory Effects of Calcitriol through DNA Methylation Alteration of FOXP3 in the CD4(+) T Cells of Mice

    Get PDF
    Vitamin D plays a variety of physiological functions, such as regulating mineral homeostasis. More recently, it has emerged as an immunomodulator player, affecting several types of immune cells, such as regulatory T (Treg) cells. It has been reported that vitamin D exerts some mediatory effects through an epigenetic mechanism. In this study, the impacts of calcitriol, the active form of vitamin D, on the methylation of the conserved non-coding sequence 2 (CNS2) region of the forkhead box P3 (FOXP3) gene promoter, were evaluated. Fourteen C57BL/6 mice were recruited in this study and divided into two intervention and control groups. The CD4(+) T cells were isolated from mice splenocytes. The expression of FOXP3, IL-10, and transforming growth factor-beta (TGF-beta 1) genes were relatively quantified by real-time PCR technique, and the DNA methylation percentage of every CpG site in the CNS2 region was measured individually by bisulfite-sequencing PCR. Vitamin D Intervention could significantly (p<0.05) increase the expression of FOXP3, IL-10, and TGF-beta 1 genes in the CD4(+) T cells of mice comparing with the control group. Meanwhile, methylation of the CNS2 region of FOXP3 promoter was significantly decreased in three of ten CpG sites in the vitamin D group compared to the control group. The results of this study showed that vitamin D can engage the methylation process to induce FOXP3 gene expression and probably Treg cytokines profile. Further researches are needed to discover the precise epigenetic mechanisms by which vitamin D modulates the immune system
    corecore