44 research outputs found

    Molecular variability in Amerindians: widespread but uneven information

    Full text link

    Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases

    Full text link

    Is urbanization scrambling the genetic structure of human populations? A case study

    Get PDF
    Recent population expansion and increased migration linked to urbanization are assumed to be eroding the genetic structure of human populations. We investigated change in population structure over three generations by analysing both demographic and mitochondrial DNA (mtDNA) data from a random sample of 2351 men from 22 Iranian populations. Potential changes in genetic diversity (Ξ) and genetic distance (FST) over the last three generations were analysed by assigning mtDNA sequences to populations based on the individual's place of birth or that of their mother or grandmother. Despite the fact that several areas included cities of over one million inhabitants, we detected no change in genetic diversity, and only a small decrease in population structure, except in the capital city (Tehran), which was characterized by massive immigration, increased Ξ and a large decrease in FST over time. Our results suggest that recent erosion of human population structure might not be as important as previously thought, except in some large conurbations, and this clearly has important implications for future sampling strategies. © 2007 Nature Publishing Group All rights reserved

    Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis.

    Get PDF
    Ruxolitinib is a Janus kinase (JAK) (JAK1/JAK2) inhibitor that has demonstrated superiority over placebo and best available therapy (BAT) in the Controlled Myelofibrosis Study with Oral JAK Inhibitor Treatment (COMFORT) studies. COMFORT-II was a randomized (2:1), open-label phase 3 study in patients with myelofibrosis; patients randomized to BAT could crossover to ruxolitinib upon protocol-defined disease progression or after the primary end point, confounding long-term comparisons. At week 48, 28% (41/146) of patients randomized to ruxolitinib achieved â©Ÿ35% decrease in spleen volume (primary end point) compared with no patients on BAT (P<0.001). Among the 78 patients (53.4%) in the ruxolitinib arm who achieved â©Ÿ35% reductions in spleen volume at any time, the probability of maintaining response was 0.48 (95% confidence interval (CI), 0.35-0.60) at 5 years (median, 3.2 years). Median overall survival was not reached in the ruxolitinib arm and was 4.1 years in the BAT arm. There was a 33% reduction in risk of death with ruxolitinib compared with BAT by intent-to-treat analysis (hazard ratio (HR)=0.67; 95% CI, 0.44-1.02; P=0.06); the crossover-corrected HR was 0.44 (95% CI, 0.18-1.04; P=0.06). There was no unexpected increased incidence of adverse events with longer exposure. This final analysis showed that spleen volume reductions with ruxolitinib were maintained with continued therapy and may be associated with survival benefits
    corecore