8 research outputs found
Backbone chemical shift assignments of human 14-3-3
14-3-3 proteins are a group of seven dimeric adapter proteins that exert
their biological function by interacting with hundreds of phosphorylated
proteins, thus influencing their sub-cellular localization, activity or
stability in the cell. Due to this remarkable interaction network, 14-3-3
proteins have been associated with several pathologies and the protein-protein
interactions established with a number of partners are now considered promising
drug targets. The activity of 14-3-3 proteins is often isoform specific and to
our knowledge only one out of seven isoforms, 14-3-3, has been assigned.
Despite the availability of the crystal structures of all seven isoforms of
14-3-3, the additional NMR assignments of 14-3-3 proteins are important for
both biological mechanism studies and chemical biology approaches. Herein, we
present a robust backbone assignment of 14-3-3, which will allow
advances in the discovery of potential therapeutic compounds. This assignment
is now being applied to the discovery of both inhibitors and stabilizers of
14-3-3 protein-protein interactions
Structural Basis of Tau Interaction With BIN1 and Regulation by Tau Phosphorylation
Bridging integrator-1 (BIN1) gene is associated with an increased risk to develop Alzheimer’s disease, a tauopathy characterized by intra-neuronal accumulation of phosphorylated Tau protein as paired helical filaments. Direct interaction of BIN1 and Tau proteins was demonstrated to be mediated through BIN1 SH3 C-terminal domain and Tau (210–240) peptide within Tau proline-rich domain. We previously showed that BIN1 SH3 interaction with Tau is decreased by phosphorylation within Tau proline-rich domain, of at least T231. In addition, the BIN1/Tau interaction is characterized by a dynamic equilibrium between a closed and open conformations of BIN1 isoform 1, involving an intramolecular interaction with its C-terminal BIN1 SH3 domain. However, the role of the BIN1/Tau interaction, and its potential dysregulation in Alzheimer’s disease, is not yet fully understood. Here we showed that within Tau (210–240) peptide, among the two proline-rich motifs potentially recognized by SH3 domains, only motif P216TPPTR221 is bound by BIN1 SH3. A structural model of the complex between BIN1 SH3 and Tau peptide (213–229), based on nuclear magnetic resonance spectroscopy data, revealed the molecular detail of the interaction. P216 and P219 within the proline-rich motif were in direct contact with the aromatic F588 and W562 of the BIN1 SH3 domain. The contact surface is extended through electrostatic interactions between the positively charged R221 and K224 residues of Tau peptide and those negatively charged of BIN1 SH3, corresponding to E556 and E557. We next investigated the impact of multiple Tau phosphorylations within Tau (210–240) on its interaction with BIN1 isoform 1. Tau (210–240) phosphorylated at four different sites (T212, T217, T231, and S235), contrary to unphosphorylated Tau, was unable to compete with the intramolecular interaction of BIN1 SH3 domain with its CLAP domain. In accordance, the affinity of BIN1 SH3 for phosphorylated Tau (210–240) peptide was reduced, with a five-fold increase in the dissociation constant, from a Kd of 44 to 256 μM. This study highlights the complexity of the regulation of BIN1 isoform 1 with Tau. As abnormal phosphorylation of Tau is linked to the pathology development, this regulation by phosphorylation might have important functional consequences
Magnetic resonance investigation of conformational responses of tau protein to specific phosphorylation
International audienceIntrinsically disordered proteins (IDPs) are known to adopt many rapidly interconverting structures, making it difficult to pinpoint the specific conformational states that are relevant for their function. Tau is an important IDP, and its conformation is known to be affected by post-translational modifications (PTMs), such as phosphorylation. To investigate the effect of specific phosphorylation on full-length Tau's dynamic global conformation, we employed a combination of nuclear magnetic resonance-based paramagnetic relaxation interference methods and electron paramagnetic resonance spectroscopy. By reproducing the AT8 epitope, comprising exclusive phosphorylation at residues S202 and T205, we were able to identify conformations specific to phosphorylated Tau, which exhibited a tendency towards less compact states. These mechanistic details are of significance to understand the path leading from soluble Tau to the ordered structure of Tau fibers. This approach proved to be successful for studying the conformational changes of (phosphorylated) full-length Tau and can potentially be extended to the study of other IDPs that undergo various PTMs
Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer
International audienceProtein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer’s disease (AD). The interaction of 14-3-3 proteins with Tau was shown to have detrimental effects on neuronal cells and to be linked to Tau pathology. This PPI is therefore seen as a potential target for AD. When Tau is phosphorylated by PKA (Tau-PKA), two 14-3-3 binding epitopes are generated, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners, are still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3 interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of the two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2:1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the inhibition of this interaction
Conformation and Affinity Modulations by Multiple Phosphorylation Occurring in the BIN1 SH3 Domain Binding Site of the Tau Protein Proline-Rich Region
International audienceAn increase in phosphorylation of the Tau protein is associated with Alzheimer's disease (AD) progression through unclear molecular mechanisms. In general, phosphorylation modifies the interaction of intrinsically disordered proteins, such as Tau, with other proteins; however, elucidating the structural basis of this regulation mechanism remains challenging. The bridging integrator-1 gene is an AD genetic determinant whose gene product, BIN1, directly interacts with Tau. The proline-rich motif recognized within a Tau(210-240) peptide by the SH3 domain of BIN1 (BIN1 SH3) is defined as 216PTPP219, and this interaction is modulated by phosphorylation. Phosphorylation of T217 within the Tau(210-240) peptide led to a 6-fold reduction in the affinity, while single phosphorylation at either T212, T231, or S235 had no effect on the interaction. Nonetheless, combined phosphorylation of T231 and S235 led to a 3-fold reduction in the affinity, although these phosphorylations are not within the BIN1 SH3-bound region of the Tau peptide. Using nuclear magnetic resonance (NMR) spectroscopy, these phosphorylations were shown to affect the local secondary structure and dynamics of the Tau(210-240) peptide. Models of the (un)phosphorylated peptides were obtained from molecular dynamics (MD) simulation validated by experimental data and showed compaction of the phosphorylated peptide due to increased salt bridge formation. This dynamic folding might indirectly impact the BIN1 SH3 binding by a decreased accessibility of the binding site. Regulation of the binding might thus not only be due to local electrostatic or steric effects from phosphorylation but also to the modification of the conformational properties of Tau