26 research outputs found

    Protein engineering approaches for antibody fragments: directed evolution and rational design approaches

    No full text
    The number of therapeutic antibodies in preclinical, clinical, or approved phases has been increasing exponentially, mostly due to their known successes. Development of antibody engineering methods has substantially hastened the development of therapeutic antibodies. A variety of protein engineering techniques can be applied to antibodies to improve their affinity and/or biophysical properties such as solubility and stability. Antibody fragments (where all or some parts of constant regions are eliminated while the essential antigen binding region is preserved) are more suitable for protein engineering techniques because there are many in vitro screening technologies available for antibody fragments but not full-length antibodies. Improvement of biophysical characteristics is important in the early development phase because most antibodies fail at the later stage of development and this leads to loss of resources and time. Here, we review directed evolution and rational design methods to improve antibody properties. Recent developments in rational design approaches and antibody display technologies, and especially phage display, which was recently awarded the 2018 Nobel Prize, are discussed to be used in antibody research and development

    Conformational changes in a Vernier zone region: Implications for antibody dual specificity

    No full text
    Understanding the determinants of antibody specificity is one of the challenging tasks in antibody development. Monospecific antibodies are still dominant in approved antibody therapeutics but there is a significant body of work to show that multispecific antibodies can increase the overall therapeutic effect. Dual-specific or "Two-in-One" antibodies can bind to two different antigens separately with the same antigen-binding site as opposed to bispecifics, which simultaneously bind to two different antigens through separate antigen-binding units. These nonstandard dual-specific antibodies were recently shown to be promising for new antibody-based therapeutics. Here, we physicochemically and structurally analyzed six different antibodies of which two are monospecific and four are dual-specific antibodies derived from monospecific templates to gain insight about dual-specificity determinants. These dual-specific antibodies can target both human epidermal growth factor receptor 2 and vascular endothelial growth factor at different binding affinities. We showed that a particular region of clustered Vernier zone residues might play key roles in gaining dual specificity. While there are minimal intramolecular interactions between a certain Vernier zone region, namely LV4 and LCDR1 of monospecific template, there is a significant structural change and consequently close contact formation between LV4-LCDR1 loops of derived dual-specific antibodies. Although Vernier zone residues were previously shown to be important for humanization applications, they are mostly underestimated in the literature. Here, we also aim to resurrect Vernier zone residues for antibody engineering efforts

    Engineering of conserved residues near antibody heavy chain complementary determining region 3 (HCDR3) improves both affinity and stability

    No full text
    Affinity and stability are crucial parameters in antibody development and engineering approaches. Although improvement in both metrics is desirable, trade-offs are almost unavoidable. Heavy chain complementarity determining region 3 (HCDR3) is the best-known region for antibody affinity but its impact on stability is often neglected. Here, we present a mutagenesis study of conserved residues near HCDR3 to elicit the role of this region in the affinity-stability trade-off. These key residues are positioned around the conserved salt bridge between VH-K94 and VH-D101 which is crucial for HCDR3 integrity. We show that the additional salt bridge at the stem of HCDR3 (VH-K94:VH-D101:VH-D102) has an extensive impact on this loop's conformation, therefore simultaneous improvement in both affinity and stability. We find that the disruption of π-π stacking near HCDR3 (VH-Y100E:VL-Y49) at the VH-VL interface cause an irrecoverable loss in stability even if it improves the affinity. Molecular simulations of putative rescue mutants exhibit complex and often non-additive effects. We confirm that our experimental measurements agree with the molecular dynamic simulations providing detailed insights for the spatial orientation of HCDR3. VH-V102 right next to HCDR3 salt bridge might be an ideal candidate to overcome affinity-stability trade-off

    Physicochemical determinants of antibody-protein interactions

    No full text
    Antibodies are specialized proteins generated by immune system for high specificity and affinity binding to target antigens. Because of their essential roles in immune system, antibodies have been successfully developed and engineered as bio-pharmaceuticals for treatment of various diseases. Analysis of antibody-protein interactions is always required to get detailed information on effectivity of such antibody-based therapeutics. Although physicochemical rules cannot be generalized for every antibody-protein interaction, there are some features which should be taken into account during antibody development and engineering efforts. In this chapter, physicochemical analysis of antibody paratope-protein epitope interactions will be discussed to highlight important characteristics. First, paratope and non-paratope regions of antibodies will be described and important roles of these regions on binding and biophysical features of antibodies will be discussed. Then, general features of epitope regions of protein antigens will be introduced along with several computational/experimental tools to identify them. Lastly, a rising star of antibody biopharmaceuticals, nanobodies, will be described to show importance of nextgeneration antibody fragment based biopharmaceuticals in drug development

    CENP-A Nucleosome is a Sensitive Allosteric Scaffold for DNA and Chromatin Factors

    No full text
    Centromeric loci of chromosomes are defined by nucleosomes containing the histone H3 variant CENP-A, which bind their DNA termini more permissively than their canonical counterpart, a feature that is critical for the mitotic fidelity. A recent cryo-EM study demonstrated that the DNA termini of CENP-A nucleosomes, reconstituted with the Widom 601 DNA sequence, are asymmetrically flexible, meaning one terminus is more clearly resolved than the other. However, an earlier work claimed that both ends could be resolved in the presence of two stabilizing single chain variable fragment (scFv) antibodies per nucleosome, and thus are likely permanently bound to the histone octamer. This suggests that the binding of scFv antibodies to the histone octamer surface would be associated with CENP-A nucleosome conformational changes, including stable binding of the DNA termini. Here, we present computational evidence that allows to explain at atomistic level the structural rearrangements of CENP-A nucleosomes resulting from the antibody binding. The antibodies, while they only bind the octamer facades are capable of altering the dynamics of the nucleosomal core, and indirectly also the surrounding DNA. This effect has more drastic implications for the structure and the dynamics of the CENP-A nucleosome in comparison to its canonical counterpart. Furthermore, we find evidence that the antibodies bind the left and the right octamer facades at different affinities, another manifestation of the DNA sequence. We speculate that the cells could use induction of similar allosteric effects to control centromere function. (C) 2020 Elsevier Ltd. All rights reserved

    Effect of non-repetitive linker on in vitro and in vivo properties of an anti-VEGF scFv

    No full text
    Single chain antibody fragments (scFvs) are favored in diagnostic and therapeutic fields thanks to their small size and the availability of various engineering approaches. Linker between variable heavy (V-H) and light (V-L) chains of scFv covalently links these domains and it can affect scFv's bio-physical/chemical properties and in vivo activity. Thus, scFv linker design is important for a successful scFv construction, and flexible linkers are preferred for a proper pairing of V-H-V-L. The flexibility of the linker is determined by length and sequence content and glycine-serine (GS) linkers are commonly preferred for scFvs based on their highly flexible profiles. Despite the advantage of this provided flexibility, GS linkers carry repeated sequences which can cause problems for PCR-based engineering approaches and immunogenicity. Here, two different linkers, a repetitive GS linker and an alternative non-repetitive linker with similar flexibility but lower immunogenicity are employed to generate anti-Vascular Endothelial Growth Factor scFvs derived from bevacizumab. Our findings highlight a better in vitro profile of the non-repetitive linker such as a higher monomer ratio, higher thermal stability while there was no significant difference in in vivo efficacy in a zebrafish embryonic angiogenesis model. This is the first study to compare in vivo efficacy of scFvs with different linkers in a zebrafish model

    The paracaspase MALT1 is a downstream target of Smad3 and potentiates the crosstalk between TGF-beta and NF-kB signaling pathways in cancer cells

    No full text
    TGF-beta signaling mediates its biological effects by engaging canonical Smad proteins and crosstalking extensively with other signaling networks, including the NF-kB pathway. The paracaspase MALT1 is an intracellular signaling molecule essential for NF-kB activation downstream of several key cell surface receptors. Despite intensive research on TGF-beta and NF-kB interactions, the significance of MALT1 in this context remains unde-coded. Here we provide experimental evidence supporting that MALT1 functions to converge these pathways. Using A549 and Huh7 cancer cell line models, we report that TGF-beta stimulation enhances MALT1 protein and transcript levels in a time-and dose-dependent manner. Systematic and selective perturbation of TGF-beta signaling components identifies MALT1 as a downstream target of Smad3. Rescue experiments in SMAD3 knockout cells confirm that C-terminal phosphorylation of Smad3 is central to MALT1 induction. Corroborating these data, we document that the expression of SMAD3 and MALT1 genes are positively correlated in TCGA cohorts, and we trace the molecular basis of MALT1 elevation to promoter activation. Functional studies in parental as well as NF-kB p65 signaling reporter engineered cells conclusively reveal that MALT1 is paramount for TGF-beta-stimulated nuclear translocation and transcriptional activation of NF-kB p65. Furthermore, we find that BCL10 is also implicated in TGF-beta activation of NF-kB target genes, potentially coupling the TGF-beta-MALT1-NF-kB signaling axis to the CARMA-BCL10-MALT1 (CBM) signalosome. The novel findings of this study indicate that MALT1 is a downstream target of the canonical TGF-beta/Smad3 pathway and plays a critical role in modulating TGF-beta and NF-kB crosstalk in cancer
    corecore