4 research outputs found

    Antibiotic exposure and risk of Parkinson's disease in finland : A nationwide case-control study

    Get PDF
    Background Gut microbiota alterations have been found in prodromal and established Parkinson's disease (PD). Antibiotic exposure can have long-term effects on the composition of human intestinal microbiota, but a potential connection between antibiotic exposure and risk of PD has not been studied previously. Objective To evaluate the impact of antibiotic exposure on the risk of PD in a nationwide, register-based, case-control study. Methods We identified all patients who were diagnosed with PD in Finland during the years 1998 to 2014. Information was obtained on individual purchases of orally administered antibiotics during the years 1993 to 2014. We assessed the association between prior antibiotic exposure and PD using conditional logistic regression. Results The study population consisted of 13,976 PD cases and 40,697 controls. The strongest connection with PD risk was found for oral exposure to macrolides and lincosamides (adjusted odds ratio up to 1.416; 95% confidence interval, 1.053-1.904). After correction for multiple comparisons, exposure to antianaerobics and tetracyclines 10 to 15 years before the index date, sulfonamides and trimethoprim 1 to 5 years before the index date, and antifungal medications 1 to 5 years before the index date were positively associated with PD risk. In post hoc analyses, further positive associations were found for broad-spectrum antibiotics. Conclusions Exposure to certain types of oral antibiotics seems to be associated with an elevated risk of PD with a delay that is consistent with the proposed duration of a prodromal period. The pattern of associations supports the hypothesis that effects on gut microbiota could link antibiotics to PD, but further studies are needed to confirm this. (c) 2019 International Parkinson and Movement Disorder SocietyPeer reviewe

    Fecal microbiome alterations in treatment-naive de novo Parkinson's disease

    Get PDF
    Gut microbiota alterations in Parkinson's disease (PD) have been found in several studies and are suggested to contribute to the pathogenesis of PD. However, previous results could not be adequately adjusted for a potential confounding effect of PD medication and disease duration, as almost all PD participants were already using dopaminergic medication and were included several years after diagnosis. Here, the gut microbiome composition of treatment-naive de novo PD subjects was assessed compared to healthy controls (HC) in two large independent case-control cohorts (n = 136 and 56 PD, n = 85 and 87 HC), using 16S-sequencing of fecal samples. Relevant variables such as technical batches, diet and constipation were assessed for their potential effects. Overall gut microbiome composition differed between PD and HC in both cohorts, suggesting gut microbiome alterations are already present in de novo PD subjects at the time of diagnosis, without the possible confounding effect of dopaminergic medication. Although no differentially abundant taxon could be replicated in both cohorts, multiple short chain fatty acids (SCFA) producing taxa were decreased in PD in both cohorts. In particular, several taxa belonging to the family Lachnospiraceae were decreased in abundance. Fewer taxonomic differences were found compared to previous studies, indicating smaller effect sizes in de novo PD.Peer reviewe

    Fecal microbiome alterations in treatment-naive de novo Parkinson's disease

    Get PDF
    Gut microbiota alterations in Parkinson's disease (PD) have been found in several studies and are suggested to contribute to the pathogenesis of PD. However, previous results could not be adequately adjusted for a potential confounding effect of PD medication and disease duration, as almost all PD participants were already using dopaminergic medication and were included several years after diagnosis. Here, the gut microbiome composition of treatment-naive de novo PD subjects was assessed compared to healthy controls (HC) in two large independent case-control cohorts (n = 136 and 56 PD, n = 85 and 87 HC), using 16S-sequencing of fecal samples. Relevant variables such as technical batches, diet and constipation were assessed for their potential effects. Overall gut microbiome composition differed between PD and HC in both cohorts, suggesting gut microbiome alterations are already present in de novo PD subjects at the time of diagnosis, without the possible confounding effect of dopaminergic medication. Although no differentially abundant taxon could be replicated in both cohorts, multiple short chain fatty acids (SCFA) producing taxa were decreased in PD in both cohorts. In particular, several taxa belonging to the family Lachnospiraceae were decreased in abundance. Fewer taxonomic differences were found compared to previous studies, indicating smaller effect sizes in de novo PD.</p
    corecore