101 research outputs found

    Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure

    Presupernova Structure of Massive Stars

    Full text link
    Issues concerning the structure and evolution of core collapse progenitor stars are discussed with an emphasis on interior evolution. We describe a program designed to investigate the transport and mixing processes associated with stellar turbulence, arguably the greatest source of uncertainty in progenitor structure, besides mass loss, at the time of core collapse. An effort to use precision observations of stellar parameters to constrain theoretical modeling is also described.Comment: Proceedings for invited talk at High Energy Density Laboratory Astrophysics conference, Caltech, March 2010. Special issue of Astrophysics and Space Science, submitted for peer review: 7 pages, 3 figure

    Model Independent Determination of the Solar Neutrino Spectrum with and without MSW

    Get PDF
    Besides the opportunity for discovering new neutrino physics, solar neutrino measurements provide a sensitive probe of the solar interior, and thus a rigorous test of solar model predictions. We present model independent determinations of the neutrino spectrum by using relevant flux components as free parameters subject only to the luminosity constraint. (1) Without the Mikheyev-Smirnov-Wolfenstein (MSW) effect, the best fit for the combined data is poor. Furthermore, the data indicate a severe suppression of the 7^7Be flux relative to the 8^8B, contradicting both standard and nonstandard solar models in general; the pppp flux takes its maximum value allowed by the luminosity constraint. This pathology consistently appears even if we ignore any one of the three data. (2) In the presence of the two-flavor MSW effect, the current constraint on the initial 8^8B flux is weak, but consistent with the SSM and sufficient to exclude nonstandard models with small 8^8B fluxes. No meaningful constraint is obtained for the other fluxes. In the future, even allowing MSW, the 8^8B and 7^7Be fluxes can be determined at the ±\pm(15 -- 20)\% level, making competing solar models distinguishable. We emphasize that the neutral current sensitivity for 7^7Be neutrinos in BOREXINO, HELLAZ, and HERON is essential for determining the initial fluxes. The constraints on the MSW parameters in the model independent analysis are also discussed.Comment: Revtex 3.0, 61 pages including 23 figures, uuencoded ps file attached. Easy way: compressed ps file of entire paper in landscape format available by anonymous ftp://upenn5.hep.upenn.edu/pub/hata/papers/model_ind.ps.

    Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1

    Get PDF
    The Canadian Earth System Model version 5.0 (CanESM5.0), the most recent major version of the global climate model developed at the Canadian Centre for Climate Modelling and Analysis (CCCma) at Environment and Climate Change Canada (ECCC), has been used extensively in climate research and for providing future climate projections in the context of climate services. Previous studies have shown that CanESM5.0 performs well compared to other models and have revealed several model biases. To address these biases, the CCCma has recently initiated the “Analysis for Development” (A4D) activity, a coordinated analysis activity in support of CanESM development. Here we describe the goals and organization of this effort and introduce two variants (“p1” and “p2”) of a new CanESM version, CanESM5.1, which features important improvements as a result of the A4D activity. These improvements include the elimination of spurious stratospheric temperature spikes and an improved simulation of tropospheric dust. Other climate aspects of the p1 variant of CanESM5.1 are similar to those of CanESM5.0, while the p2 variant of CanESM5.1 features reduced equilibrium climate sensitivity and improved El Niño–Southern Oscillation (ENSO) variability as a result of intentional tuning of the atmospheric component. The A4D activity has also led to the improved understanding of other notable CanESM5.0 and CanESM5.1 biases, including the overestimation of North Atlantic sea ice, a cold bias over sea ice, biases in the stratospheric circulation and a cold bias over the Himalayas. It provides a potential framework for the broader climate community to contribute to CanESM development, which will facilitate further model improvements and ultimately lead to improved climate change information.</p

    Periodic activity from a fast radio burst source

    Full text link
    Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from extragalactic distances. Their origin is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events. Despite searches for periodicity in repeat burst arrival times on time scales from milliseconds to many days, these bursts have hitherto been observed to appear sporadically, and though clustered, without a regular pattern. Here we report the detection of a 16.35±0.1516.35\pm0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from a repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB). In 38 bursts recorded from September 16th, 2018 through February 4th, 2020, we find that all bursts arrive in a 5-day phase window, and 50% of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself, or through external amplification or absorption, and disfavour models invoking purely sporadic processes

    CHIME/FRB Detection of Eight New Repeating Fast Radio Burst Sources

    Full text link
    We report on the discovery of eight repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 103.5 to 1281 pc cm3^{-3}. They display varying degrees of activity: six sources were detected twice, another three times, and one ten times. These eight repeating FRBs likely represent the bright and/or high-rate end of a distribution of infrequently repeating sources. For all sources, we determine sky coordinates with uncertainties of \sim10^\prime. FRB 180916.J0158+65 has a burst-averaged DM = 349.2±0.3349.2 \pm 0.3 pc cm3^{-3} and a low DM excess over the modelled Galactic maximum (as low as \sim20 pc cm3^{-3}); this source also has a Faraday rotation measure (RM) of 114.6±0.6-114.6 \pm 0.6 rad m2^{-2}, much lower than the RM measured for FRB 121102. FRB 181030.J1054+73 has the lowest DM for a repeater, 103.5±0.3103.5 \pm 0.3 pc cm3^{-3}, with a DM excess of \sim 70 pc cm3^{-3}. Both sources are interesting targets for multi-wavelength follow-up due to their apparent proximity. The DM distribution of our repeater sample is statistically indistinguishable from that of the first 12 CHIME/FRB sources that have not repeated. We find, with 4σ\sigma significance, that repeater bursts are generally wider than those of CHIME/FRB bursts that have not repeated, suggesting different emission mechanisms. Our repeater events show complex morphologies that are reminiscent of the first two discovered repeating FRBs. The repetitive behavior of these sources will enable interferometric localizations and subsequent host galaxy identifications.Comment: 40 pages, 11 figures; accepted by ApJL on 28 September 2019; added analysis of correlation between width and max. flux densit
    corecore