7,446 research outputs found
Long-Term Evolution of Massive Black Hole Binaries. III. Binary Evolution in Collisional Nuclei
[Abridged] In galactic nuclei with sufficiently short relaxation times,
binary supermassive black holes can evolve beyond their stalling radii via
continued interaction with stars. We study this "collisional" evolutionary
regime using both fully self-consistent N-body integrations and approximate
Fokker-Planck models. The N-body integrations employ particle numbers up to
0.26M and a direct-summation potential solver; close interactions involving the
binary are treated using a new implementation of the Mikkola-Aarseth chain
regularization algorithm. Even at these large values of N, two-body scattering
occurs at high enough rates in the simulations that they can not be simply
scaled to the large-N regime of real galaxies. The Fokker-Planck model is used
to bridge this gap; it includes, for the first time, binary-induced changes in
the stellar density and potential. The Fokker-Planck model is shown to
accurately reproduce the results of the N-body integrations, and is then
extended to the much larger N regime of real galaxies. Analytic expressions are
derived that accurately reproduce the time dependence of the binary semi-major
axis as predicted by the Fokker-Planck model. Gravitational wave coalescence is
shown to occur in <10 Gyr in nuclei with velocity dispersions below about 80
km/s. Formation of a core results from a competition between ejection of stars
by the binary and re-supply of depleted orbits via two-body scattering. Mass
deficits as large as ~4 times the binary mass are produced before coalescence.
After the two black holes coalesce, a Bahcall-Wolf cusp appears around the
single hole in one relaxation time, resulting in a nuclear density profile
consisting of a flat core with an inner, compact cluster, similar to what is
observed at the centers of low-luminosity spheroids.Comment: 21 page
Evolution of the Dark Matter Distribution at the Galactic Center
Annihilation radiation from neutralino dark matter at the Galactic center
(GC) would be greatly enhanced if the dark matter were strongly clustered
around the supermassive black hole (SBH). The existence of a dark-matter
"spike" is made plausible by the observed, steeply-rising stellar density near
the GC SBH. Here the time-dependent equations describing gravitational
interaction of the dark matter particles with the stars are solved. Scattering
of dark matter particles by stars would substantially lower the dark matter
density near the GC SBH over 10^10 yr, due both to kinetic heating, and to
capture of dark matter particles by the SBH. This result suggests that
enhancements in the dark matter density around a SBH would be modest whether or
not the host galaxy had experienced the scouring effects of a binary SBH.Comment: 5 pages, 3 figures. Submitted to Physical Review Letter
Gravitational waves from galaxy encounters
We discuss the emission of gravitational radiation produced in encounters of
dark matter galactic halos. To this aim we perform a number of numerical
simulations of typical galaxy mergers, computing the associated gravitational
radiation waveforms as well as the energy released in the processes. Our
simulations yield dimensionless gravitational wave amplitudes of the order of
and gravitational wave frequencies of the order of Hz,
when the galaxies are located at a distance of 10 Mpc. These values are of the
same order as those arising in the gravitational radiation originated by strong
variations of the gravitational field in the early Universe, and therefore,
such gravitational waves cannot be directly observed by ground-based detectors.
We discuss the feasibility of an indirect detection by means of the B-mode
polarization of the Cosmic Microwave Background (CMB) induced by such waves.
Our results show that the gravitational waves from encounters of dark matter
galactic halos leave much too small an imprint on the CMB polarization to be
actually observed with ongoing and future missions.Comment: 9 pages with revtex style, 3 ps figures; to be published in Physical
Review
Discovering New Particles at Colliders
We summarize the activities of the New Particles Subgroup at the 1996 Snowmass Workshop. We present the expectations for discovery or exclusion of leptoquarks at hadron and lepton colliders in the pair production and single production modes. The indirect detection of a scalar lepton quark at polarized and colliders is discussed. The discovery prospects for particles with two units of lepton number is discussed. We summarize the analysis of the single production of neutral heavy leptons at lepton colliders
Free Radicals in Superfluid Liquid Helium Nanodroplets: A Pyrolysis Source for the Production of Propargyl Radical
An effusive pyrolysis source is described for generating a continuous beam of
radicals under conditions appropriate for the helium droplet pick-up method.
Rotationally resolved spectra are reported for the vibrational mode of
the propargyl radical in helium droplets at 3322.15 cm. Stark spectra
are also recorded that allow for the first experimental determination of the
permanent electric dipole moment of propargyl, namely -0.150 D and -0.148 D for
ground and excited state, respectively, in good agreement with previously
reported ab initio results of -0.14 D [1]. The infrared spectrum of the
mode of propargyl-bromide is also reported. The future application of these
methods for the production of novel radical clusters is discussed
Long Term Evolution of Massive Black Hole Binaries
The long-term evolution of massive black hole binaries at the centers of
galaxies is studied in a variety of physical regimes, with the aim of resolving
the ``final parsec problem,'' i.e., how black hole binaries manage to shrink to
separations at which emission of gravity waves becomes efficient. A binary
ejects stars by the gravitational slingshot and carves out a loss cone in the
host galaxy. Continued decay of the binary requires a refilling of the loss
cone. We show that the standard treatment of loss cone refilling, derived for
collisionally relaxed systems like globular clusters, can substantially
underestimate the refilling rates in galactic nuclei. We derive expressions for
non-equilibrium loss-cone dynamics and calculate time scales for the decay of
massive black hole binaries following galaxy mergers, obtaining significantly
higher decay rates than heretofore. Even in the absence of two-body relaxation,
decay of binaries can persist due to repeated ejection of stars returning to
the nucleus on eccentric orbits. We show that this recycling of stars leads to
a gradual, approximately logarithmic dependence of the binary binding energy on
time. We derive an expression for the loss cone refilling induced by the
Brownian motion of a black hole binary. We also show that numerical N-body
experiments are not well suited to probe these mechanisms over long times due
to spurious relaxation.Comment: Replaced to match the accepted version, ApJ, 596 (2003
A Compact Supermassive Binary Black Hole System
We report on the discovery of a supermassive binary black hole system in the
radio galaxy 0402+379, with a projected separation between the two black holes
of just 7.3 pc. This is the closest black hole pair yet found by more than two
orders of magnitude. These results are based upon recent multi-frequency
observations using the Very Long Baseline Array (VLBA) which reveal two
compact, variable, flat-spectrum, active nuclei within the elliptical host
galaxy of 0402+379. Multi-epoch observations from the VLBA also provide
constraints on the total mass and dynamics of the system. Low spectral
resolution spectroscopy using the Hobby-Eberly Telescope indicates two velocity
systems with a combined mass of the two black holes of ~1.5 x 10^8 solar
masses. The two nuclei appear stationary while the jets emanating from the
weaker of the two nuclei appear to move out and terminate in bright hot spots.
The discovery of this system has implications for the number of close binary
black holes that might be sources of gravitational radiation. Green Bank
Telescope observations at 22 GHz to search for water masers in this interesting
system are also presented.Comment: 34 pages, 7 figures, Accepted to The Astrophysical Journa
"Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole
One of the most exciting potential sources of gravitational waves for
low-frequency, space-based gravitational wave (GW) detectors such as the
proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact
objects into massive black holes in the centers of galaxies. The detection of
waves from such "extreme mass ratio inspiral" systems (EMRIs) and extraction of
information from those waves require template waveforms. The systems' extreme
mass ratio means that their waveforms can be determined accurately using black
hole perturbation theory. Such calculations are computationally very expensive.
There is a pressing need for families of approximate waveforms that may be
generated cheaply and quickly but which still capture the main features of true
waveforms. In this paper, we introduce a family of such "kludge" waveforms and
describe ways to generate them. We assess performance of the introduced
approximations by comparing "kludge" waveforms to accurate waveforms obtained
by solving the Teukolsky equation in the adiabatic limit (neglecting GW
backreaction). We find that the kludge waveforms do extremely well at
approximating the true gravitational waveform, having overlaps with the
Teukolsky waveforms of 95% or higher over most of the parameter space for which
comparisons can currently be made. Indeed, we find these kludges to be of such
high quality (despite their ease of calculation) that it is possible they may
play some role in the final search of LISA data for EMRIs.Comment: 29 pages, 11 figures, requires subeqnarray; v2 contains minor changes
for consistency with published versio
On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA
Newly formed black holes are expected to emit characteristic radiation in the
form of quasi-normal modes, called ringdown waves, with discrete frequencies.
LISA should be able to detect the ringdown waves emitted by oscillating
supermassive black holes throughout the observable Universe. We develop a
multi-mode formalism, applicable to any interferometric detectors, for
detecting ringdown signals, for estimating black hole parameters from those
signals, and for testing the no-hair theorem of general relativity. Focusing on
LISA, we use current models of its sensitivity to compute the expected
signal-to-noise ratio for ringdown events, the relative parameter estimation
accuracy, and the resolvability of different modes. We also discuss the extent
to which uncertainties on physical parameters, such as the black hole spin and
the energy emitted in each mode, will affect our ability to do black hole
spectroscopy.Comment: 44 pages, 21 figures, 10 tables. Minor changes to match version in
press in Phys. Rev.
- …