255 research outputs found

    Unstaged cancer in the United States: a population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current study examines unstaged disease for 18 cancer sites in the United States according to the influence of age, sex, race, marital status, incidence, and lethality.</p> <p>Methods</p> <p>Analyses are based on 1,040,381 male and 1,011,355 female incident cancer cases diagnosed during 2000 through 2007. Data were collected by population-based cancer registries in the National Cancer Institute's Surveillance, Epidemiology, and End Results Program.</p> <p>Results</p> <p>The level of unstaged disease was greater in more lethal cancers (e.g., liver, esophagus, and pancreas) compared with less deadly cancers (i.e., colon, urinary bladder, and female breast). Unstaged disease increased with age and is greater among non-married patients. Blacks compared with whites experienced significantly higher levels of unstaged cancers of the stomach, rectum, colon, skin (melanoma), urinary bladder, thyroid, breast, corpus, cervix, and ovaries, but lower levels of unstaged liver, lung and bronchial cancers. Males compared with females experienced significantly lower levels of unstaged cancers of the liver, pancreas, esophagus, and stomach, but significantly higher levels of unstaged lung and bronchial cancer and thyroid cancer. The percent of unstaged cancer significantly decreased over the study period for 15 of the 18 cancer sites.</p> <p>Conclusion</p> <p>Tumor staging directly affects treatment options and survival, so it is recommended that further research focus on why a decrease in unstaged disease did not occur for all of the cancer sites considered from 2000 to 2007, and why there are differential levels of staging between whites and blacks, males and females for several of the cancer sites.</p

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Ethnic differences in DNA methyltransferases expression in patients with systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematous (SLE) is a systemic autoimmune inflammatory disease with both genetic and epigenetic etiologies. Evidence suggests that deregulation of specific genes through epigenetic mechanisms may be a contributing factor to SLE pathology. There is increasing evidence that DNA methyltransferase activity may be involved. This study demonstrated modulation in expression of DNA methyltransferases (DNMTs) according to ethnicity in patients diagnosed with SLE. Furthermore, differential expression in one of the DNMTs was found in a subset of lupus patients on dehydroepiandrosterone (DHEA) therapy. Real-time PCR analyses of DNMT1, DNMT3A and DNMT3B in peripheral blood mononuclear cells from a cohort of African American and European American lupus and non-lupus women were conducted. Also, global DNA methylation was assessed using the MethylFlash.sup.TM methylated quantification colorimetric assay. These findings suggest that epigenetic changes may play a critical role in the manifestations of the disease observed among ethnic groups, particularly African American women who often have a higher incidence of lupus. DHEA therapy effects on DNMT3A expression in AA women warrant further investigation in a larger population

    Large-Scale Selective Sweep among Segregation Distorter Chromosomes in African Populations of Drosophila melanogaster

    Get PDF
    Segregation Distorter (SD) is a selfish, coadapted gene complex on chromosome 2 of Drosophila melanogaster that strongly distorts Mendelian transmission; heterozygous SD/SD+ males sire almost exclusively SD-bearing progeny. Fifty years of genetic, molecular, and theory work have made SD one of the best-characterized meiotic drive systems, but surprisingly the details of its evolutionary origins and population dynamics remain unclear. Earlier analyses suggested that the SD system arose recently in the Mediterranean basin and then spread to a low, stable equilibrium frequency (1–5%) in most natural populations worldwide. In this report, we show, first, that SD chromosomes occur in populations in sub-Saharan Africa, the ancestral range of D. melanogaster, at a similarly low frequency (∼2%), providing evidence for the robustness of its equilibrium frequency but raising doubts about the Mediterranean-origins hypothesis. Second, our genetic analyses reveal two kinds of SD chromosomes in Africa: inversion-free SD chromosomes with little or no transmission advantage; and an African-endemic inversion-bearing SD chromosome, SD-Mal, with a perfect transmission advantage. Third, our population genetic analyses show that SD-Mal chromosomes swept across the African continent very recently, causing linkage disequilibrium and an absence of variability over 39% of the length of the second chromosome. Thus, despite a seemingly stable equilibrium frequency, SD chromosomes continue to evolve, to compete with one another, or evade suppressors in the genome

    Metabolomics in Early Alzheimer's Disease: Identification of Altered Plasma Sphingolipidome Using Shotgun Lipidomics

    Get PDF
    The development of plasma biomarkers could facilitate early detection, risk assessment and therapeutic monitoring in Alzheimer's disease (AD). Alterations in ceramides and sphingomyelins have been postulated to play a role in amyloidogensis and inflammatory stress related neuronal apoptosis; however few studies have conducted a comprehensive analysis of the sphingolipidome in AD plasma using analytical platforms with accuracy, sensitivity and reproducibility.We prospectively analyzed plasma from 26 AD patients (mean MMSE 21) and 26 cognitively normal controls in a non-targeted approach using multi-dimensional mass spectrometry-based shotgun lipidomics to determine the levels of over 800 molecular species of lipids. These data were then correlated with diagnosis, apolipoprotein E4 genotype and cognitive performance. Plasma levels of species of sphingolipids were significantly altered in AD. Of the 33 sphingomyelin species tested, 8 molecular species, particularly those containing long aliphatic chains such as 22 and 24 carbon atoms, were significantly lower (p<0.05) in AD compared to controls. Levels of 2 ceramide species (N16:0 and N21:0) were significantly higher in AD (p<0.05) with a similar, but weaker, trend for 5 other species. Ratios of ceramide to sphingomyelin species containing identical fatty acyl chains differed significantly between AD patients and controls. MMSE scores were correlated with altered mass levels of both N20:2 SM and OH-N25:0 ceramides (p<0.004) though lipid abnormalities were observed in mild and moderate AD. Within AD subjects, there were also genotype specific differences.In this prospective study, we used a sensitive multimodality platform to identify and characterize an essentially uniform but opposite pattern of disruption in sphingomyelin and ceramide mass levels in AD plasma. Given the role of brain sphingolipids in neuronal function, our findings provide new insights into the AD sphingolipidome and the potential use of metabolomic signatures as peripheral biomarkers

    Iminosugar-Based Inhibitors of Glucosylceramide Synthase Increase Brain Glycosphingolipids and Survival in a Mouse Model of Sandhoff Disease

    Get PDF
    The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects

    Degradation of Host Sphingomyelin Is Essential for Leishmania Virulence

    Get PDF
    In eukaryotes, sphingolipids (SLs) are important membrane components and powerful signaling molecules. In Leishmania, the major group of SLs is inositol phosphorylceramide (IPC), which is common in yeast and Trypanosomatids but absent in mammals. In contrast, sphingomyelin is not synthesized by Leishmania but is abundant in mammals. In the promastigote stage in vitro, Leishmania use SL metabolism as a major pathway to produce ethanolamine (EtN), a metabolite essential for survival and differentiation from non-virulent procyclics to highly virulent metacyclics. To further probe SL metabolism, we identified a gene encoding a putative neutral sphingomyelinase (SMase) and/or IPC hydrolase (IPCase), designated ISCL (Inositol phosphoSphingolipid phospholipase C-Like). Despite the lack of sphingomyelin synthesis, L. major promastigotes exhibited a potent SMase activity which was abolished upon deletion of ISCL, and increased following over-expression by episomal complementation. ISCL-dependent activity with sphingomyelin was about 20 fold greater than that seen with IPC. Null mutants of ISCL (iscl−) showed modest accumulation of IPC, but grew and differentiated normally in vitro. Interestingly, iscl− mutants did not induce lesion pathology in the susceptible BALB/c mice, yet persisted indefinitely at low levels at the site of infection. Notably, the acute virulence of iscl− was completely restored by the expression of ISCL or heterologous mammalian or fungal SMases, but not by fungal proteins exhibiting only IPCase activity. Together, these findings strongly suggest that degradation of host-derived sphingomyelin plays a pivotal role in the proliferation of Leishmania in mammalian hosts and the manifestation of acute disease pathology

    Down-Regulation of the Canonical Wnt β-Catenin Pathway in the Airway Epithelium of Healthy Smokers and Smokers with COPD

    Get PDF
    Background: The Wnt pathway mediates differentiation of epithelial tissues; depending on the tissue types, Wnt can either drive or inhibit the differentiation process. We hypothesized that key genes in the Wnt pathway are suppressed in the human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the epithelial differentiated state. Methodology/Principal Findings: Microarrays were used to assess the expression of Wnt-related genes in the small airway epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers, healthy smokers, and smokers with COPD. Thirty-three of 56 known Wnt-related genes were expressed in the SAE. Wnt pathway downstream mediators b-catenin and the transcription factor 7-like 1 were down-regulated in healthy smokers and smokers with COPD, as were many Wnt target genes. Among the extracellular regulators that suppress the Wnt pathway, secreted frizzled-related protein 2 (SFRP2), was up-regulated 4.3-fold in healthy smokers and 4.9-fold in COPD smokers, an observation confirmed by TaqMan Real-time PCR, Western analysis and immunohistochemistry. Finally, cigarette smoke extract mediated up-regulation of SFRP2 and down-regulation of Wnt target genes in airway epithelial cells in vitro. Conclusions/Significance: Smoking down-regulates the Wnt pathway in the human airway epithelium. In the context that Wnt pathway plays an important role in differentiation of epithelial tissues, the down-regulation of Wnt pathway ma
    corecore