2,841 research outputs found

    An inquiry-based learning approach to teaching information retrieval

    Get PDF
    The study of information retrieval (IR) has increased in interest and importance with the explosive growth of online information in recent years. Learning about IR within formal courses of study enables users of search engines to use them more knowledgeably and effectively, while providing the starting point for the explorations of new researchers into novel search technologies. Although IR can be taught in a traditional manner of formal classroom instruction with students being led through the details of the subject and expected to reproduce this in assessment, the nature of IR as a topic makes it an ideal subject for inquiry-based learning approaches to teaching. In an inquiry-based learning approach students are introduced to the principles of a subject and then encouraged to develop their understanding by solving structured or open problems. Working through solutions in subsequent class discussions enables students to appreciate the availability of alternative solutions as proposed by their classmates. Following this approach students not only learn the details of IR techniques, but significantly, naturally learn to apply them in solution of problems. In doing this they not only gain an appreciation of alternative solutions to a problem, but also how to assess their relative strengths and weaknesses. Developing confidence and skills in problem solving enables student assessment to be structured around solution of problems. Thus students can be assessed on the basis of their understanding and ability to apply techniques, rather simply their skill at reciting facts. This has the additional benefit of encouraging general problem solving skills which can be of benefit in other subjects. This approach to teaching IR was successfully implemented in an undergraduate module where students were assessed in a written examination exploring their knowledge and understanding of the principles of IR and their ability to apply them to solving problems, and a written assignment based on developing an individual research proposal

    A Memory Bandwidth-Efficient Hybrid Radix Sort on GPUs

    Full text link
    Sorting is at the core of many database operations, such as index creation, sort-merge joins, and user-requested output sorting. As GPUs are emerging as a promising platform to accelerate various operations, sorting on GPUs becomes a viable endeavour. Over the past few years, several improvements have been proposed for sorting on GPUs, leading to the first radix sort implementations that achieve a sorting rate of over one billion 32-bit keys per second. Yet, state-of-the-art approaches are heavily memory bandwidth-bound, as they require substantially more memory transfers than their CPU-based counterparts. Our work proposes a novel approach that almost halves the amount of memory transfers and, therefore, considerably lifts the memory bandwidth limitation. Being able to sort two gigabytes of eight-byte records in as little as 50 milliseconds, our approach achieves a 2.32-fold improvement over the state-of-the-art GPU-based radix sort for uniform distributions, sustaining a minimum speed-up of no less than a factor of 1.66 for skewed distributions. To address inputs that either do not reside on the GPU or exceed the available device memory, we build on our efficient GPU sorting approach with a pipelined heterogeneous sorting algorithm that mitigates the overhead associated with PCIe data transfers. Comparing the end-to-end sorting performance to the state-of-the-art CPU-based radix sort running 16 threads, our heterogeneous approach achieves a 2.06-fold and a 1.53-fold improvement for sorting 64 GB key-value pairs with a skewed and a uniform distribution, respectively.Comment: 16 pages, accepted at SIGMOD 201

    Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model

    Full text link
    Using a mean-field dynamo model with a spherically symmetric helical turbulence parameter alpha which is dynamically quenched and disturbed by additional noise, the basic features of geomagnetic polarity reversals are shown to be generic consequences of the dynamo action in the vicinity of exceptional points of the spectrum. This simple paradigmatic model yields long periods of constant polarity which are interrupted by self-accelerating field decays leading to asymmetric polarity reversals. It shows the recently discovered bimodal field distribution, and it gives a natural explanation of the correlation between polarity persistence time and field strength. In addition, we find typical features of coherence resonance in the dependence of the persistence time on the noise.Comment: 5 pages, 7 figure

    A major star formation region in the receding tip of the stellar Galactic bar. II. Supplementary information and evidence that the bar is not the same structure as the triaxial bulge previouly reported

    Get PDF
    This paper is the second part of Garzon et al. (1997: ApJ 491, L31) in which we presented an outline of the analysis of 60 spectra from a follow-up program to the Two Micron Galactic Survey (TMGS) project in the l=27 deg., b=0 deg. area. In this second part, we present a more detailed explanation of the analysis as well a library of the spectra for more complete information for each of the 60 stars, and further discussions on the implications for the structure of the Galaxy. This region contains a prominent excess in the flux distribution and star counts previously observed in several spectral ranges, notably in the TMGS. More than 50% of the spectra of the stars detected with m_K<5.0 mag, within a very high confidence level, correspond to stars of luminosity class I, and a significant proportion of the remainder are very late giants which must also be rapidly evolving. We make the case, using all the available evidence, that we are observing a region at the nearer end of the Galactic bar, where the Scutum spiral arm breaks away, and that this is powerful evidence for the presence of the bar. Alternative explanations do not give nearly such a satisfactory account of the observations. The space localization of one and, a fortiori, of both ends of the bar allows us to infer a position angle for the bar of around 75 deg. with respect to the Sun-Galactic centre line. The angle is different from that given by other authors for the bar and this, we think, is because they refer to the triaxial bulge and not to the bar as detected here.Comment: 21 pages, 1 table, 9 figures, accepted in A

    Relation of habitual chocolate consumption to arterial stiffness in a community-based sample: Preliminary findings

    Get PDF
    BACKGROUND: The consumption of chocolate and cocoa has established cardiovascular benefits. Less is known about the effects of chocolate on arterial stiffness, a marker of subclinical cardiovascular disease. The aim of this study was to investigate whether chocolate intakes are independently associated with pulse wave velocity (PWV), after adjustment for cardiovascular, lifestyle and dietary factors. METHODS: Prospective analyses were undertaken on 508 community-dwelling participants (mean age 61 years, 60% women) from the Maine-Syracuse Longitudinal Study (MSLS). Habitual chocolate intakes, measured using a food frequency questionnaire, were related to PWV, measured approximately 5 years later. RESULTS: Chocolate intake was significantly associated with PWV in a non-linear fashion with the highest levels of PWV in those who never or rarely ate chocolate and lowest levels in those who consumed chocolate once a week. This pattern of results remained and was not attenuated after multivariate adjustment for diabetes, cardiovascular risk factors and dietary variables (p = 0.002). CONCLUSIONS: Weekly chocolate intake may be of benefit to arterial stiffness. Further studies are needed to explore the underlying mechanisms that may mediate the observed effects of habitual chocolate consumption on arterial stiffness

    Relations between dairy food intake and arterial stiffness: Pulse wave velocity and pulse pressure

    Get PDF
    Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial stiffness including carotid-femoral pulse wave velocity and pulse pressure. A cross-sectional analysis of a subset of the Maine Syracuse Longitudinal Study sample was performed. A linear decrease in pulse wave velocity was observed across increasing intakes of dairy food consumption (ranging from never/rarely to daily dairy food intake). The negative linear relationship between pulse wave velocity and intake of dairy food was independent of demographic variables, other cardiovascular disease risk factors and nutrition variables. The pattern of results was very similar for pulse pressure, while no association between dairy food intake and lipid levels was found. Further intervention studies are needed to ascertain whether dairy food intake may be an appropriate dietary intervention for the attenuation of age-related arterial stiffening and reduction of cardiovascular disease risk

    Probing the Neutron-Capture Nucleosynthesis History of Galactic Matter

    Full text link
    The heavy elements formed by neutron capture processes have an interesting history from which we can extract useful clues to and constraints upon both the characteristics of the processes themselves and the star formation and nucleosynthesis history of Galactic matter. Of particular interest in this regard are the heavy element compositions of extremely metal-deficient stars. At metallicities [Fe/H] <= -2.5, the elements in the mass region past barium (A >= 130-140 have been found (in non carbon-rich stars) to be pure r-process products. The identification of an environment provided by massive stars and associated Type II supernovae as an r-process site seems compelling. Increasing levels of heavy s-process (e.g., barium) enrichment with increasing metallicity, evident in the abundances of more metal-rich halo stars and disk stars, reflect the delayed contributions from the low- and intermediate-mass (M \~ 1-3 Msol) stars that provide the site for the main s-process nucleosynthesis component during the AGB phase of their evolution. New abundance data in the mass region 60 <~ A <~ 130 is providing insight into the identity of possible alternative r-process sites. We review recent observational studies of heavy element abundances both in low metallicity halo stars and in disk stars, discuss the observed trends in light of nucleosynthesis theory, and explore some implications of these results for Galactic chemical evolution, nucleosynthesis, and nucleocosmochronology.Comment: 47 pages, 2 tables, 11 figures; To appear in PAS

    First high-energy proton tomography of a mouse

    Get PDF
    corecore