100 research outputs found

    Genomic profiling of Escherichia coli isolates from bacteraemia patients: a 3-year cohort study of isolates collected at a Sydney teaching hospital

    Get PDF
    This study sought to assess the genetic variability of Escherichia coli isolated from bloodstream infections (BSIs) presenting at Concord Hospital, Sydney during 2013ā€“2016. Whole-genome sequencing was used to characterize 81 E. coli isolates sourced from community-onset (CO) and hospital-onset (HO) BSIs. The cohort comprised 64 CO and 17 HO isolates, including 35 multidrug-resistant (MDR) isolates exhibiting phenotypic resistance to three or more antibiotic classes. Phylogenetic analysis identified two major ancestral clades. One was genetically diverse with 25 isolates distributed in 16 different sequence types (STs) representing phylogroups A, B1, B2, C and F, while the other comprised phylogroup B2 isolates in subclades representing the ST131, ST73 and ST95 lineages. Forty-seven isolates contained a class 1 integron, of which 14 carried blaCTX -M-gene. Isolates with a class 1 integron carried more antibiotic resistance genes than isolates without an integron and, in most instances, resistance genes were localized within complex resistance loci (CRL). Resistance to fluoroquinolones could be attributed to point mutations in chromosomal parC and gyrB genes and, in addition, two isolates carried a plasmid-associated qnrB4 gene. Co-resistance to fluoroquinolone and broad-spectrum beta-lactam antibiotics was associated with ST131 (HO and CO), ST38 (HO), ST393 (CO), ST2003 (CO) and ST8196 (CO and HO), a novel ST identified in this study. Notably, 10/81 (12.3ā€Š%) isolates with ST95 (5 isolates), ST131 (2 isolates), ST88 (2 isolates) and a ST540 likely carry IncFIIā€“IncFIB plasmid replicons with a full spectrum of virulence genes consistent with the carriage of ColV-like plasmids. Our data indicate that IncF plasmids play an important role in shaping virulence and resistance gene carriage in BSI E. coli in Australia

    Escherichia coli ST8196 is a novel, locally evolved, and extensively drug resistant pathogenic lineage within the ST131 clonal complex

    Get PDF
    The H30Rx subclade of Escherichia coli ST131 is a clinically important, globally dispersed pathogenic lineage that typically displays resistance to fluoroquinolones and extended spectrum Ī²-lactams. Isolates EC233 and EC234, variants of ST131-H30Rx with a novel sequence type (ST) 8196, isolated from unrelated patients presenting with bacteraemia at a Sydney Hospital in 2014 are characterised here. EC233 and EC234 are phylogroup B2, serotype O25:H4A, and resistant to ampicillin, amoxicillin, cefoxitin, ceftazidime, ceftriaxone, ciprofloxacin, norfloxacin and gentamicin and are likely clonal. Both harbour an IncFII_2 plasmid (pSPRC_Ec234-FII) that carries most of the resistance genes on an IS26 associated translocatable unit, two small plasmids and a novel IncI1 plasmid (pSPRC_Ec234-I). SNP-based phylogenetic analysis of the core genome of representatives within the ST131 clonal complex places both isolates in a subclade with three clinical Australian ST131-H30Rx clade-C isolates. A MrBayes phylogeny analysis of EC233 and EC234 indicates ST8196 share a most recent common ancestor with ST131-H30Rx strain EC70 isolated from the same hospital in 2013. Our study identified genomic hallmarks that define the ST131-H30Rx subclade in the ST8196 isolates and highlights a need for unbiased genomic surveillance approaches to identify novel high-risk MDR E. coli pathogens that impact healthcare facilities

    Phylogenomic analysis of a global collection of Escherichia coli ST38: evidence of interspecies and environmental transmission?

    Get PDF
    We performed a comprehensive phylogenomic analysis of 925 extraintestinal pathogenic Escherichia coli (ExPEC) ST38 genomes from 38 countries and diverse hosts and sources. The phylogeny resolved two broad clades: A (593 strains; 91% human) and B (332 isolates; 42% human), each with distinct ST38 clusters linked to the carriage of specific bla CTX-M alleles, often in association with other antibiotic resistance genes, class 1 integrons and specific plasmid replicon types. Co-carriage of fyuA and irp2 virulence genes, a reliable proxy for carriage of the Yersinia high-pathogenicity island, featured in 580 (62.7%) genomes. ST38 lineages carrying combinations of ExPEC and intestinal pathogenic Escherichia coli virulence factors were also identified. The F plasmid replicon was identified in 536 (58%) genomes, and 112 of these (21%) carry cjrABC-senB, a virulence operon frequently identified in pandemic ExPEC sequence types. Most (108; 96.4%) cjrABC-senB+ ST38 isolates were from human and other sources, except food animals, and were associated with F5:A-:B10 (41 isolates), F1:A2:B20 (20 isolates), and F24:A-:B1 (15 isolates) F replicon types. ST38 genomes that were inferred to carry a ColV-F virulence plasmid (69; 7.4%) were mostly from human (12; 17.4%), avian (26; 37.7%), or poultry (10; 6.9%) sources. We identified multiple examples of putative inter-host and host-environment transmission events, where genomes differed by <35 SNPs. This work emphasizes the importance of adopting a One Health approach for phylogenomic studies that seek to improve understanding of antimicrobial resistance and pathogen evolution

    Generalized Structural Description of Calciumā€“Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model

    Get PDF
    Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calciumā€“sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calciumā€“sodium aluminosilicate gel structures than that previously established in the literature
    • ā€¦
    corecore