178 research outputs found

    To grate a liquid into tiny droplets by its impact on a hydrophobic micro-grid

    Full text link
    We report on experiments of drop impacting a hydrophobic micro-grid, of typical spacing a few tens of μ\mum. Above a threshold in impact speed, liquid emerges to the other side, forming micro-droplets of size about that of the grid holes. We propose a method to produce either a mono-disperse spray or a single tiny droplet of volume as small as a few picoliters corresponding to a volume division of the liquid drop by a factor of up to 105^5. We also discuss the discrepancy of the measured thresholds with that predicted by a balance between inertia and capillarity.Comment: 3 pages, 5 figures, Accepted for publication in Applied Physics Letter

    A near field optical image of a gold surface: a luminescence study

    No full text
    International audienceThis paper addresses recent experimental findings about luminescence of a gold tip in near-field interaction with a gold surface. Our electrochemically etched gold tips show a typical, intrinsic luminescence that we exploit to track the plasmon resonance modeled by a Lorentzian oscillator. Our experimental device is based on a spectrometer optically coupled to an atomic force microscope used in tuning fork mode. Our measurements provide evidence of a strong optical coupling between the tip and the surface. We demonstrate that this coupling strongly affects the luminescence (Intensity, wavelength and FHWM) as a function of the tip position in 2D maps. The fluctuation of these parameters is directly related to the plasmonic properties of the gold surface and is used to qualify the optical near field enhancement (which subsequently plays the predominant role in surface enhanced spectroscopies) with a very high spatial resolution (typically around 20 nm). We compare these findings to the independently recorded near-field scattered elastic Rayleigh signal

    Effects of electromagnetic waves on the electrical properties of contacts between grains

    Full text link
    A DC electrical current is injected through a chain of metallic beads. The electrical resistances of each bead-bead contacts are measured. At low current, the distribution of these resistances is large and log-normal. At high enough current, the resistance distribution becomes sharp and Gaussian due to the creation of microweldings between some beads. The action of nearby electromagnetic waves (sparks) on the electrical conductivity of the chain is also studied. The spark effect is to lower the resistance values of the more resistive contacts, the best conductive ones remaining unaffected by the spark production. The spark is able to induce through the chain a current enough to create microweldings between some beads. This explains why the electrical resistance of a granular medium is so sensitive to the electromagnetic waves produced in its vicinity.Comment: 4 pages, 5 figure

    Plasmon-Mediated Drilling in Thin Metallic Nanostructures

    Get PDF
    Tetrahedral nanopyramids made of silver and gold over ITO/glass surfaces are fabricated. Our protocol is based on nanosphere lithography (NSL) with the deposition of thicker metal layers. After removing the microspheres used in the NSL process, an array of metallic tetrahedral nanostructures of ~350-400 nm height is formed. The reported procedure avoids the use of any stabilizing surfactant molecules that are generally necessary to segregate the individual particles onto surfaces. We focus here on the optical and the physical properties of these plasmonic surfaces using near-field spectroscopy in conjunction with finite difference time domain (FDTD) modeling of the electric field. Remarkably, FDTD shows that the localized surface plasmon resonance is confined in the plane formed by the edges of two facing pyramids that is parallel to the polarization of the impinging excitation laser. The variable gap between the edges of two adjacent pyramids shows a broader localized surface plasmon and larger specific surface as opposed to the usual nanotriangle array. Localized enhancement of the electric field is experimentally investigated by coating the plasmonic surface with a thin film of photosensitive azopolymer onto the surface of the nanopyramids. The reported deformation upon radiation of the surface topography is visualized by atomic force microscopy and suggests the potentiality of these 3D nanopyramids for near-field enhancement. This last feature is clearly confirmed by surface-enhanced Raman scattering measurement with 4-nitrothiophenol molecules deposited on the pyramid platforms. The potentiality of such 3D nanostructures in plasmonics and surface spectroscopy is thus clearly demonstrated

    Some aspects of electrical conduction in granular systems of various dimensions

    Get PDF
    We report on measurements of the electrical conductivity in both a 2D triangular lattice of metallic beads and in a chain of beads. The voltage/current characteristics are qualitatively similar in both experiments. At low applied current, the voltage is found to increase logarithmically in a good agreement with a model of widely distributed resistances in series. At high enough current, the voltage saturates due to the local welding of microcontacts between beads. The frequency dependence of the saturation voltage gives an estimate of the size of these welded microcontacts. The DC value of the saturation voltage (~ 0.4 V per contact) gives an indirect measure of the number of welded contact carrying the current within the 2D lattice. Also, a new measurement technique provides a map of the current paths within the 2D lattice of beads. For an isotropic compression of the 2D granular medium, the current paths are localized in few discrete linear paths. This quasi-onedimensional nature of the electrical conductivity thus explains the similarity between the characteristics in the 1D and 2D systems.Comment: To be published in The European Physical Journal

    High-pressure behavior of polyiodides confined into single-walled carbon nanotubes: A Raman study

    Get PDF
    International audienceThe high-pressure behavior of polyiodides confined into the hollow core of single-walled carbon nanotubes organized into bundles has been studied by means of Raman spectroscopy. Several regimes of the structural properties are observed for the nanotubes and the polyiodides under pressure. Raman responses of both compounds exhibit correlations over the whole pressure range (0–17 GPa). Modifications, in particular, take place, respectively, between 1 and 2.3 GPa for polyiodides and between 7 and 9 GPa for nanotubes, depending on the experiment. Differences between one experiment to another are discussed in terms of nanotube filling homogeneity. These transitions can be presumably assigned to the tube ovalization pressure and to the tube collapse pressure. A nonreversibility of several polyiodide mode modifications is evidenced and interpreted in terms of a progressive linearization of the iodine polyanions and a reduction in the charged species on pressure release. Furthermore, the significant change in the mode intensities could be associated to an enhancement of lattice modes, suggesting the formation of a new structure inside the nanotube. Changes in the nanotube mode positions after pressure release point out a decrease in the charge transfer in the hybrid system consistent with the observed evolution of the charged species

    High-pressure behavior of polyiodides confined into single-walled carbon nanotubes: A Raman study

    Get PDF
    International audienceThe high-pressure behavior of polyiodides confined into the hollow core of single-walled carbon nanotubes organized into bundles has been studied by means of Raman spectroscopy. Several regimes of the structural properties are observed for the nanotubes and the polyiodides under pressure. Raman responses of both compounds exhibit correlations over the whole pressure range (0–17 GPa). Modifications, in particular, take place, respectively, between 1 and 2.3 GPa for polyiodides and between 7 and 9 GPa for nanotubes, depending on the experiment. Differences between one experiment to another are discussed in terms of nanotube filling homogeneity. These transitions can be presumably assigned to the tube ovalization pressure and to the tube collapse pressure. A nonreversibility of several polyiodide mode modifications is evidenced and interpreted in terms of a progressive linearization of the iodine polyanions and a reduction in the charged species on pressure release. Furthermore, the significant change in the mode intensities could be associated to an enhancement of lattice modes, suggesting the formation of a new structure inside the nanotube. Changes in the nanotube mode positions after pressure release point out a decrease in the charge transfer in the hybrid system consistent with the observed evolution of the charged species

    Elaboration of a Novel Design Pirani Pressure Sensor for High Dynamic Range Operation and Fast Response Time

    Get PDF
    AbstractWe report a novel design for realizing Pirani sensor with a working range from a 1kPa up to pressure over than atmospheric one. The sensor is specifically designed to achieve high sensitivity, fast response time and high robustness. The proof of concept is composed of four metallic resistors interconnected to form a Wheatstone bridge. Two of them act simultaneously as the heating and sensing elements and the two others are used as a temperature reference. The heating element consists of a metallic wire of platinum Pt (3μm width, 1mm length) maintained on each lateral side by periodic silicon oxide SiO2 micro-bridges. The sensor design, fabrication technologies, electrical characterizations and voltage-pressure responses are described and shown. A future perspective is given, which describe the extension of this concept to elastic wave transduction of pressure using a combination of heater element and thin plate elastic waveguide
    • …
    corecore