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ABSTRACT. Tetrahedral nanopyramids made of silver and gold over ITO/glass surfaces are 

fabricated. Our protocol is based on nanosphere lithography (NSL) with the deposition of thicker 

metal layers. After removing the microspheres used in the NSL process, an array of metallic 

tetrahedral nanostructures of ~350-400 nm height is formed. The reported procedure avoids the 

use of any stabilizing surfactant molecules that are generally necessary to segregate the 

individual particles onto surfaces. We focus here on the optical and the physical properties of 

these plasmonic surfaces using near-field spectroscopy in conjunction with finite difference time 

domain (FDTD) modeling of the electric field. Remarkably, FDTD shows that the localized 

surface plasmon resonance is confined in the plane formed by the edges of two facing pyramids 

that is parallel to the polarization of the impinging excitation laser. The variable gap between the 

edges of two adjacent pyramids shows a broader localized surface plasmon and larger specific 

surface as opposed to the usual nanotriangle array. Localized enhancement of the electric field is 

experimentally investigated by coating the plasmonic surface with a thin film of photosensitive 

azopolymer onto the surface of the nanopyramids. The reported deformation upon radiation of 

the surface topography is visualized by atomic force microscopy and suggests the potentiality of 

these 3D nanopyramids for near-field enhancement. This last feature is clearly confirmed by 

surface-enhanced Raman scattering measurement with 4-nitrothiophenol molecules deposited on 

the pyramid platforms. The potentiality of such 3D nanostructures in plasmonics and surface 

spectroscopy is thus clearly demonstrated.  

  

KEYWORDS. Plasmonics, Nanopyramid Arrays, Localized Surface Plasmon Resonance, 

Surface-Enhanced Raman Spectroscopy, Nanosphere lithography.  
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INTRODUCTION 

Plasmonic structures produced by advanced nanofabrication techniques open up new 

possibilities when the manipulation of a resonant optical field is of interest.1 The current 

advances in plasmonics technology for active and passive photonic devices,2-4 spectroscopic 

applications,5-7 and the conception of photovoltaic devices8 all arise from the possibility to 

fabricate metallic nanostructures into a short range arrangement over large surfaces.  Electron-

beam lithography,9,10 and focused ion beam are particularly well suited for the fabrication of high 

resolution features (~10 nm) on small areas. Other approaches using nanoimprint lithography,8,11    

deep-UV lithography followed by epitaxial growth or atomic layer deposition or annealing 8,12 

are common techniques used to make plasmonic surfaces with features as small as 10 nm over 

standard 4, 6 and 12 inch wafers.  

Among the available nanofabrication methods, nanosphere lithography (NSL) is a versatile and 

economical approach to make sharp nanostructures organized onto large surfaces.13 These 

nanostructures have various applications ranging from surface-enhanced spectroscopy, surface 

plasmon resonance measurements for biosensing applications14 to solar cell applications with the 

ultimate goal to improve the photovoltaic conversion efficiency.15 Initially reported by Fischer et 

al.,16  NSL platforms use the properties of the localized surface plasmon resonance (LSPR) 

confined at the apices formed by two adjacent nanotriangles.14,17-21 In NSL, a monolayer of silica 

or polystyrene nanoparticles is formed onto mica, silicon or glass wafer.22 A thin layer of silver 

or gold with a thickness of around 30 nm would be then deposited on this monolayer. Once the 

particles are removed, an array of metallic nanotriangles (Au, Ag) of 20-30 nm thicknesses 

would be formed over the substrate. However in most cases, only thin layer of metal is 

deposited, leading to simple flat triangles array.  



 4

In this work, we show that the deposition of a thicker layer of metal with thickness of roughly 

half of the diameter of an individual particle lead to the formation of tetrahedral pyramids 

organized in a hexagonal pattern. Herein, we mainly focus our study on optical near-field and 

plasmonics properties of such nano-objects. Noteworthy, the proposed protocol can be used for a 

variety of other applications by changing the composition of deposited material. Such 3D and 

sharp nanopyramids could be used for hydrophobic surfaces, field emission, catalysis and many 

other applications.13 Furthermore, these 3D individual objects can be further functionalized with 

guest molecules and being used as platform for enhanced optical sensing. The optical properties 

of these arrays were first investigated using FDTD calculations for Ag and Au nanostructures 

along the transverse and longitudinal planes with respect to the polarization direction of 532 and 

632.8 nm excitation wavelengths. In order to visualize the areas with maximum field 

enhancement we used the approach, developed by Hubert,23-25 using a thin film of a 

photosensitive azobenzene polymer, and compared the topographical changes probed by AFM to 

the numerical calculations of the electric field.  

Finally, the Raman surface enhancements of these platforms are systematically investigated for 

gold and silver nanopyramids at both 532 and 632.8 nm excitations. Silver nanopyramids 

demonstrated the highest enhancement of the Raman signal, leading to the photochemical 

transformation of NTP. Photogeneration of dimercaptoazobenzene appears to be effective for 

both excitation wavelengths, although 532 nm is always more efficient even under modest 

irradiation of 200 µW. 
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EXPERIMENTAL SECTION 

Materials. Microscope coverslips (22 × 22 × 0.15 mm) were purchased from VWR 

International, Mississauga, Canada. Nochromix was purchased from Godax Laboratories Inc, 

Maryland, US. Hydrogen peroxide (30% v/v) was obtained from EMD Inc, Mississauga, 

Canada. Polystyrene microspheres (10% w/w) of 1 µm diameter were purchased from 

ThermoScientific Co (California, US). Sodium dodecyl sulfate (SDS) was obtained from Sigma-

Aldrich, Missouri, US.  Glass slides coated with 110 nm indium thin oxide (ITO) were purchased 

from Lumtec (Taiwan). 

Preparation of Samples by Nanosphere Lithography (NSL). A detailed description of the 

preparation of the samples can be found elsewhere.26, 17 Briefly, microscope coverslips used to 

prepare the monolayer of polystyrene particles at the water surface were first sonicated in 

acetone for 5 min followed by cleaning in nochromix solution in concentrated sulphuric acid for 

15 mins. Subsequently, the slides were rinsed in Milli-Q ultrapure water (18.2 MΩ.cm) several 

times. These were sonicated for 1 hour in mixture of ammonium hydroxide: hydrogen peroxide: 

ultrapure water (18.2 MΩ.cm) in ratio of 5:1:1. Afterwards, the glass slides were sonicated for 15 

mins in water. Polystyrene microspheres solution was equilibrated to room temperature prior to 

use. Thereafter, 30 µL aliquot of polystyrene solution was mixed with 30 µL of ethanol (100%). 

20 µL of the prepared solution was deposited on top of the dried coverslip. This was immediately 

introduced in the air-water interface of a 6 cm petri dish filled with ultrapure water (18.2 

MΩ.cm). The coverslip floated on the air-water interface and the polystyrene colloidal solution 

spread out to the air-water interface. After the dispersion of the solution, the coverslip sank to the 

bottom of the petri dish. A few drops of 2% (w/v) SDS solution in water were added to further 

group the nanospheres into an ordered monolayer. The nanosphere solution was finally picked up 
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using a wet and clean glass slide coated with ITO and was allowed to dry overnight under a petri 

dish.  

Metal Deposition and Characterization. After the samples dried, 350-400 nm of Au were 

deposited using electron beam evaporation (Hoser, Ottawa, Canada). The polystyrene particles 

were finally removed by sonicating the sample in ethanol for about a minute. The sample was 

then dried under the nitrogen gas. Scanning Electron Microscope (SEM) images were obtained 

using a LEO Zeiss 1540XB (Zeiss, Oberkochen, Germany). Atomic force microscopy 

measurements were performed with a NanoWizard II bioscience from JPK instruments (Berlin, 

Germany). AFM scans were conducted in non-contact mode using standard AFM tips (NCL20 

Nano World Inc.; resonance frequency f=170 kHz, force constant k = 48 N/m or NSC15/AlBS 

Micromash; resonance frequency f=325 kHz, force constant k=46 N/m) 

FDTD simulations. The distribution of the electric field intensity in close proximity of the 

silver and gold nanopyramids was calculated using FDTD Solutions (Lumerical Solutions, Inc). 

The calculations were set up as a three dimensional system with a 0.15 nm resolution grid, for 

1000 femtoseconds, including appropriate boundary conditions. A plane wave source was chosen 

at 532 or 632.8 nm working wavelengths, with a propagation axis perpendicular to the plane of 

the single or lattice of pyramids, and with a polarization along the X axis. The physical 

parameters, such as size and height of the nanopyramids, used in these calculations were 

obtained from the AFM and SEM data. The dielectric constant of the ITO, glass (silicon 

dioxide), silver and gold were described by the Drude model provided in the material database 

from the software. The calculation of the relative total electric field intensity (|E|2) and its image 

plot was obtained from the contribution of its components (|Ex|2 + |Ey|2 + |Ez|2) and it was 

calculated at the apex or the bottom of the pyramids.  
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Azopolymer thin film preparation and photoinduced surface deformation. A solution of 

poly{4´-[[[methacryloyloxy)ethyl]ethyl]amino]-4-nitroazobenzene-co-methyl methacrylate} 

with 11% molar azobenzene moieties (p(DR1M-co-MMA)-11%) was prepared in chloroform 

(0.05 g in 5 ml of solvent) and spin-casted over the nanopyramids at a speed of 1000 rpm. The 

films were annealed 10 min at 100 ºC. Resulting film thickness was of 80 nm as measured by 

atomic force microscopy on a small scratch made with the tip of a needle. To induce azobenzene 

surface deformation, irradiation was conducted at 532 nm (Coherent, Compass 315M Laser) with 

an expanded beam of about 6 mm, and an irradiance set to 100 mW/cm2 for an irradiation time 

of 15 minutes. 

 

 

Scheme 1. Chemical Structure of p(DR1M-co-MMA) 11% 

Raman SERS measurements. The Raman measurements were performed using a Horiba 

Jobin-Yvon Raman spectrometer equipped with a 600 grooves/mm grating and a 532 or 632.8 

nm excitations with proper interference and edge filters. For both laser sources, intensities were 

set to 2 mW or 200 µW at the sample using neutral density filters with 1.0 or 2.0 optical 

densities, respectively. Microscope objective of x40, 0.7 N.A. was used for all experiments. 
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Pinhole of the spectrometer was opened to 300 µm. All Raman spectra are shown without 

baseline correction. 

 

RESULT AND DISCUSSION 

A variety of methods have been reported for the fabrication of organized arrays of sharp 

nanotip structures for SERS applications. Conical27 or pyramidal28-30  structures have been made 

using top-down approaches with the desire to obtain very sharp apex at the extremity of the 

pyramids, leading to efficient SERS platforms. Although, these sharp structures are often distant 

by several microns from each other.31 Other bottom-up approaches have also been reported with 

the intention to obtain sharp tips. However, due to the inhomogeneous distribution of such 

structures over a surface, their application for analytical purposes such as SERS is 

compromised.31,32 In the present work, it is shown that the sharpness of the tip is not the 

dominant effect for the enhancement. The proximity of the pyramids edges is a much more 

important factor in particular when the irradiation source is polarized in the transverse direction 

with respect to the tip orientation. Inverted pyramids engraved on silicon and coated with gold 

that are commercially available for SERS measurements (Klarite TM, Renishaw diagnostic),33 

use the variable gaps between two opposed edges of the inverted pyramid. However, since they 

are opaque, they can be used only in reflection geometry. On the contrary, our structures can be 

used for both reflection/transmission measurements since the pyramids are deposited on a 

transparent ITO-coated glass substrate.  

Characterization of nanopyramid arrays fabricated by NSL. The resulting scanning 

electron microscopy (SEM) images of the nanopyramids formed by NSL are shown in Figure 1a-

d after deposition of 400 nm layer of silver over the 1 µm diameter polystyrene spheres by 

electron-beam evaporation.  
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Figure 1. a) SEM images of silver-coated polystyrene nanospheres. b) Array of silver 

nanopyramids. c,d) Individual silver nanopyramids before and after coating with an azopolymer 

thin film, respectively. e,f) Extinction spectra of the Silver (red) and gold(blue) nanopyramids. 

Excitation wavelengths as well as the spectral ranges between 800 and 1800 cm-1 with respect to 

both excitations are indicated. 

The principle of NSL is depicted in the Supporting Information (Figure S1, Supporting 

information (SI)). The triangular voids between three adjacent spheres in close contact get 

smaller during the deposition process, leading to the formation of pyramidal structures. The 

indium tin oxide (ITO) layer of 120 nm thickness over the glass slide forms an adhesive layer, 
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avoiding further deposition of chromium or titanium deposition. It can be clearly seen that both 

deposited metal and the ITO layer demonstrated intrinsic roughness on the substrate (Figure 1a). 

Subsequent to the lift-off process of the polystyrene nanoparticles, a large surface (mm2) of 

homogeneous pyramids can be observed over the ITO substrate (Figure 1b). Similar structures 

have been obtained for gold (Figure S2, SI). The extinction spectra of both silver and gold 

nanopyramid arrays (Figure 1e-f) show two resonances corresponding to the quadrupolar and the 

dipolar contributions, respectively. For silver, the quadrupolar LSPR is expected at 550 nm, 

while for gold this resonance is red-shifted to 585 nm. The dipolar contributions are even further 

shifted in the near-infrared range at 1035 nm and 1100 nm, respectively. 

 

Finite Difference Time Domain (FDTD) Calculations. In order to estimate the influence of 

the geometry on the localization of the LSPR, we have performed a series of FDTD calculations 

for Au and Ag nanopyramids irradiated with 532 and 632.8 nm wavelengths. The results of the 

normalized intensity enhancement, |𝐸/𝐸଴|ଶ depicted in logarithm scale are shown in Figure 2 for 

Ag/532nm, while other cases (Ag/632.8, Au/632.8 and Au/532) are demonstrated in supporting 

information (Figure S3 – S5, SI).  

In Figure 2a-c, a single isolated pyramid was also investigated. The EM field was calculated in 

both longitudinal and transverse directions as shown in Figure 2a-c. In Figure 2a, the field is 

significantly confined along the edge of the pyramids, which is also oriented along the 

polarization direction. 

The typical field enhancement shown in log scale corresponds to 20 folds enhancement of the 

electric field, approximately. The field was calculated in the transverse plane with respect to light 

propagation 2 nm above the base of the pyramid  (Figure 2b) and 2 nm above the submit of the 
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pyramid (Figure 2c). Localized enhancement can be clearly seen at the three base corners of the 

pyramids (Intensity enhancement of |𝐸 𝐸଴⁄ |ଶ ൌ103), while the enhancement at the summits of 

the pyramid is limited (Intensity enhancement of 101.68~50). This indicates that the polarization 

of the input light must have a component along the tip axis and no component in the orthogonal 

direction. Such observation was reported for nanoscale resolution tip-enhanced Raman 

spectroscopy (TERS), where the impinging field was ideally polarized along the tip axis to excite 

the plasmon modes resonance of the metalized tip. This was then employed as a local 

nanoantennae to probe the surface of interest.34,35 

Further modeling was conducted on an array of pyramids arranged in a hexagonal lattice along 

the longitudinal and transverse planes with respect to the propagation direction k. In Figure 2d, 

the field in the longitudinal plane of two facing pyramids was investigated. In this case, the field 

was also considerably confined along the facing edges of the pair of pyramids that formed 

variable gaps.  
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Figure 2. FDTD calculation of the transverse (b,c,f,g) and longitudinal (a,d,e) components of the 

electric field (|𝐸/𝐸଴|ଶ, Log scale representation) for silver nanopyramids prepared on ITO and 

irradiated at 532 nm. The transverse field shown in (c,f) are calculated 2 nm above the tip(s) of 

the pyramid(s). The transverse field shown in (b,g)  are calculated 2 nm above the ITO base 

layer. 

Typically, the field is confined from the base of the pyramids to about half the height of the 

pyramids summit. This is as well observed for other material/wavelength configurations such as 
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Ag/632.8 (Figure S3-d, SI), and Au/632.8 (Figure S4-d, SI) as opposed to Au/532 (Figure S5-d, 

SI). In the later configuration, the field enhancement was confined along the edges of the 

pyramid pairs. However, no effective coupling was observed between the facing pyramids. The 

results clearly showed that the variable gap between opposed pyramids can be beneficial to 

applications in plasmon enhanced spectroscopy, since the matching between the plasmon 

resonance frequency and the excitation light frequency may not be critical. In other words, from 

calculations shown in Figure 2 and Figure S3 (SI), silver nanopyramids are expected to be 

efficient for field enhancement at both 532 and 632.8 nm wavelengths. For gold pyramids, the 

scenario is different and coupling was mainly effective when 632.8 nm excitation was being 

used. As shown in Figures S3d, S4d (SI), coupling between facing pyramids was only observed 

at 632.8 nm, while for 532 nm the enhanced field was mainly observed along the opposed edges 

of the nanopyramids, but without any coupling. Based on these calculations, we can then expect 

a much lower overall enhancement for gold pyramids exposed by 532 nm wavelengths, while 

silver pyramids will be effective for both wavelengths.  For surface-enhanced Raman, this is of 

interest but one must consider as well the enhancement of the Raman shifted frequencies. As 

shown in Figure 1e, ideally, both EExcitation and ERaman must be in resonance or pre-resonance with 

the extinction of the plasmon frequency to be enhanced. When these two conditions are fulfilled, 

the electromagnetic enhancement, F,  is given by36 

 𝐹 ൌ ቚாಶೣ೎೔೟ೌ೟೔೚೙

ாబ
ቚ

ଶ
ቚாೃೌ೘ೌ೙

ாబ
ቚ

ଶ
                                    (1) 

It appears that excitations at 532 and 632.8 nm are both resonant for the silver nanostructure, 

which gave rise to the enhancement of the Raman signal in the fingerprint region of the molecule 

of interest. From the FDTD calculation, assuming an intensity enhancement of 103 at both the 

excitation and Raman wavelengths for Ag/532 nm, equation (1) yields to an overall SERS 
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enhancement factor of ~106 which is comparable to reported values in literature.10 However, for 

gold pyramids, since the excitation of 532 nm is weakly resonant with the quadrupolar 

contribution of pyramidal structure, a smaller Raman enhancement is therefore expected. 

Mapping individual hot-spots on photosensitive self-developing azopolymer. In order to 

visualize the confinement of the field over the whole plasmonic structure, experiments using a 

photosensitive polymer were conducted on the nanostructures. An azobenzene thin layer (80 nm) 

was spin coated over the whole silver nanopyramid arrays, leading to a smooth surface as shown 

in Figure 1d. Azobenzene polymer is of particular interest since it undergoes surface migration 

and subsequent topographical changes upon irradiation by resonant light.  In this study, we used 

p(DR1M-co-MMA) with a molar ratio in azobenzene moieties of 11% (Scheme 1). The donor 

(NH2) and acceptor (NO2) groups located on opposite sides of the azobenzene core are 

responsible for the large charge density on the molecule, leading to a colorful thin film material 

with an absorption at maximum wavelength of λ=500 nm and extinction coefficient of =70000 

l.mol-1.cm-1. Therefore, excitation wavelength of 532 nm will be doubly resonant with i-the 

plasmon resonance of the silver pyramids array and ii- the absorption of the azobenzene 

polymer, leading to the most efficient surface deformation.  Atomic force microscopy images 

were collected on the samples before and after irradiation at 532 nm with an irradiance of 100 

mW/cm2 (Figure 3a-b). Subtle changes in the surface topography can be observed after 

irradiation during 15 min as shown by the indicated cross sections (1) and (2) on the AFM 

images. A topographical increase of 7±2 nm can also be systematically measured at the center of 

a lattice (cross section (1)) over several individual lattices as shown in Figure 3b,d. The cross 

section shown in Figure 3b, shows a bi-modal increases with two maxima separated by a smaller 

minimum. This change of topography is a very useful indicator of the field location knowing that 
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azopolymers migrates from area where the field is large towards areas where the field is weaker. 

As shown in Figure 2g for silver pyramids, the field calculated 2 nm above the pyramid base is 

indeed weaker at the center of the lattice, while the most intense field was observed at the apices 

between facing triangles.   

The azopolymer molecules migrated towards the center of the lattice as expected. Besides, the 

small minimum between the two maxima can be explained by the competition between the 

migration processes coming from both sides. Similar effect has been reported previously for 

studies where gratings were inscribed holographically onto thin films of azopolymers, leading to 

half periodic structures with respect to the interference fringe spacing.37 This is the result of 

photodriven mass transport  from successive photoisomerization steps.38,39 This photoinduced 

mechanism suggests possible strong alterations of the local viscoelastic properties of the polymer 

and changes of the local densities that further alter the migration of the polymer chains towards 

the center of the lattice.37. Similar changes were obtained when the cross section was measured 

along closely facing triangles (cross section (2) on the AFM images). As shown in Figure 3ef, 

the topographical change is small. It is less than 5 nm in height variation, but yet very clearly 

observable by AFM. Also, the change of the slopes along the edges of two facing pyramids is 

due to the migration of the photosensitive polymer mediated and amplified by the plasmonic 

resonance. The slope of the polymer thin film deposited over the pyramids becomes steeper after 

irradiation, which indicated a mass flow from the area where enhancement of the field is high, 

due to the plasmon enhancement, towards regions where the field is weaker. In addition, the gap 

between the two facing pyramids indicated a weaker field enhancement at the exact center 

between the facing pyramids. Thus, the polymer migration was predominantly observed along 

the edge of the pyramids. 
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Figure 3. a,b) AFM images of Ag nanopyramids prepared on ITO coated with a 80 nm 

azopolymer thin film layer  before (a) and after (b) 15 min of irradiation with a irradiance of 100 

mW/cm2 . c,d) topographical cross sections along the center of a hexagonal lattice (noted ) of 

Ag nanopyramids before and after irradiation. The height scale of (d) has been expanded to show 

better the small topographical changes occurring at the center of the lattice. e,f) AFM 

topographical cross sections along the closest facing silver pyramids (noted ) before and after 

irradiation. The height scale of (f) has been expanded to show better the small topographical 

changes occurring at the center of the lattice and the edges of the pyramids. 

SERS measurements. The capability of these pyramidal structures was further investigated 

for SERS application using a standard molecule. To perform this, the structures were immersed 
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in a 1 mM solution of 4-nitrothiophenol (NTP) for 24 hours and subsequently rinsed with ethanol 

to remove non-adsorbed species.  

Both gold and silver pyramid arrays were investigated with excitation wavelengths of 532 and 

632.8 nm. The Raman spectra measured on the pyramidal nanostructures are reported in Figure 4 

together with the reference spectra performed on flat portion of the deposited metal. None of the 

reference spectra measured on flat gold and silver areas showed spectral feature, emphasizing the 

interest of using the nanostructured surface for the study of adsorbed monolayers.  

We also compared side-by-side the SERS spectra from gold nanopyramids and nanotriangles 

made by NSL (Figure S6, SI). In the latter case (nanotriangles), the thickness of gold was 30 nm. 

At 632.8 nm excitation, the SERS spectra are systematically more intense for the nanopyramids 

as compared to the nanotriangles by a typical factor of ~4. This gain confirms the interest of the 

nanopyramids compared to the nanotriangles for ultrasensitive measurements. 

The spectra shown in Figure 4a demonstrated an intense signal for gold pyramids upon 

irradiation at 632.8 nm, whereas the Raman spectrum was weak for 532 nm. This confirms that 

the matching between the excitation wavelength and the plasmon resonance is critical and was 

fulfilled only for the Au/632.8 case. The main spectral features observed in Figure 4a at 1078, 

1107, 1340 and 1572 cm-1 are assigned to 7a (coupled with C-S bond), -N, s NO2 and 8b of 

the phenyl group, respectively.40 The SERS spectra of silver nanopyramids irradiated by 632.8 

nm laser with 0.2 and 2 mW intensities are shown in Figure 4b. Noticeably, the initial spectrum 

recorded with 0.2 mW was similar to the Au/632.8 case in terms of relative intensities and 

magnitude. Silver pyramidal nanostructures have therefore a plasmon that can be used in 

conjunction with both irradiation wavelengths since, as shown in Figure 1e, both 532 and 632.8 

nm wavelengths are pre-resonant with the plasmon absorption. 
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Figure 4. Raman spectra of NTP adsorbed on the nanopyramid arrays. The spectra were 

recorded with same acquisition time (10 s). No baseline correction was performed. Raman 

spectra acquired on flat metal portions (no structures) and functionalized the same conditions as 
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shown. a) SERS spectra collected on Au nanopyramids with 632.8 and 532 nm irradiations. b) 

SERS spectra collected on Ag nanopyramids with 632.8 nm excitation under 0.2 mW (initial) 

and 2mW (final) irradiations. c) SERS spectra collected on Ag nanopyramids with 532 nm 

excitation under 0.2 mW and 2mW irradiations. d) SERS spectra recorded at 632.8 nm on Ag 

nanopyramids at 2 mW (initial) and 0.2 mW (final). 

Considerably, the initial spectrum recorded with 0.2 mW was also similar to the Au/632.8 case 

in terms of relative intensities. However, when the laser power was increased to 2 mW, the 

collected spectra showed significant changes. This could be understood by considering the fact 

that 2 mW laser focused with high N.A. microscope objective implies a typical irradiance in the 

MW/cm2 range. New bands at 1142, 1387 and 1437 cm-1 (noted 1, 2 and 3 in Figure 4b) were 

assigned to C-H, N=N+C=C+C-H and N=N+C=C+C-H, respectively, while the intensity of the 

1340 cm-1  band (s NO2 ) was decreased. Such observations were investigated by several groups 

and were assigned to photoinduced reduction of p-NTP on Ag surfaces to form 

dimercaptoazobenzene (DMAB).40-42 More recently, time resolved measurements using tip-

enhanced spectroscopy were reported using a silver–coated AFM tip irradiated by a 532 nm 

excitation laser. Nonetheless, a non-resonant laser at 632.8 nm was used to probe the 

photoreduction as a function of irradiation time.43  

Our results indicated that for these particular plasmonic platforms, even 632.8 nm can trigger 

the photoreduction of p-NTP into DMAB as long as irradiation intensity is sufficiently high. The 

same condition was also applied to silver structures at 532 nm, which exhibited the highest 

enhancement as shown in Figure 4c.  For both intensities of the excitation source, the spectra 

showed the new peaks assigned to the formation of DMAB as in the case of Ag/632.8. However, 

the peak associated with the symmetric stretching mode of NO2 was even further reduced in 
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intensity, indicating a higher photoreduction yield upon 532 nm irradiation. Similarly, the Raman 

band at 1183 cm-1 (noted 4) in Figure 4c was significantly increased which has not been 

addressed in other studies. This clearly indicates that Ag/532 offered the highest enhancement 

conditions even at low power.  

 

Figure 5. SERS spectra of NTP adsorbed onto silver nanopyramids recorded initially under 2 

mW irradiance followed by a measurement under 0.2 mW with identical acquisition time (10 s). 

 

Significant relative intensity changes indicated the photoinduced transformation of the 

molecule of interest. Thus, a control experiment was performed to confirm the irreversibility of 

the photoinduced transformation. Using Ag/632.8 nm conditions, intensity of 2 mW was first 

used to collect the first spectrum shown in Figure 5 (noted (1)). The second spectrum (noted (2) 

in Figure 5, was collected after irradiation with 0.2 mW similar to the conditions of Figure 4b. In 

such sequence the spectral features recorded with the lowest intensity were identical to the 

spectra measured with higher intensity, confirming the irreversibility of the photoinduced 

reaction. 
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CONCLUSION 

In this work, we have prepared arrays of metallic nanopyramids made of gold and silver using 

nanosphere lithography. This study is focused on plasmonics properties and near field 

enhancement of such real 3D nanostructure. Both platforms were investigated upon irradiation 

by 532 and 632.8 nm wavelengths, since the quadrupolar plasmon resonance of both structured 

metals have resonance close to these wavelengths. FDTD calculations in the transverse and 

longitudinal planes with respect to the propagation direction of the excitation source were 

systematically conducted for the four cases, namely Au/532, Au/632.8 and Ag/532, Ag/632.8. 

These calculations clearly showed that the silver nanostructure can efficiently be excited at 532 

and 632.8 nm, whereas gold nanostructure is not expected to be efficient at 532 nm. To 

complement these FDTD simulations, AFM characterization and Raman measurements were 

also conducted on the samples using photosensitive azopolymer thin film. This allows one to 

monitor topographical changes on the surface of silver nanostructure coated with a photo 

responsive film. In addition, this opens up the opportunity to indirectly locate the area of high 

field enhancement over the substrate. Finally, these structures were tested for SERS 

measurements with p-NTP molecules. As a result, SERS was observed predominantly for 

Ag/532, Ag/632.8 and Au/632.8. For silver nanostructures, photoreduction of p-NTP to DMAB 

was also observed. In the case of 632.8 nm irradiation, it was shown to be dependent on the laser 

intensity. Such changes were irreversible, emphasizing the interest of metallic plasmonic 

platforms not only for surface enhancement, but also for photoinduced chemical reaction at a 

monolayer of a material on the surface. These nanopyramid arrays fabricated on a conductive 

and transparent substrate can be further integrated in solar cells, benefiting from both the 
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plasmon enhancement of the solar spectrum and the electronic conduction of the ITO layer, 

yielding to a higher photovoltaic conversion efficiency. 

Beyond optical applications, we suggest that these high aspect ratio structures have also 

potential as super-hydrophobic surfaces and field emission antennae. The extremely simple but 

efficient protocol proposed here based on the well-known NSL lithography can be applied to 

many materials for the preparation of real 3D sharp nanopyramids array on large surfaces.    

 

ASSOCIATED CONTENT 

Supporting Information. Figures S1-S5. This material is available free of charge via the 

Internet at http://pubs.acs.org.  

AUTHOR INFORMATION 

Corresponding Author 

flagugne@uwo.ca and merlen@univ-tln.fr 

Author Contributions 

The manuscript was written through contributions of all authors.  All authors have given 
approval to the final version of the manuscript.  # These authors contributed equally. 
 

ACKNOWLEDGMENT 

The authors wish to gratefully acknowledge the Center for Advanced Material and Biomaterial 

for supporting the work done in the Nanofabrication Facility at The University of Western 

Ontario. This research was funded by the Sciences and Engineering Research Council of Canada 

Discovery Grant and by the Canada Research Chairs program. The authors also acknowledge the 



 23

Agence Nationale de la Recherche Scientifique (ANR) for financial support under the 

CARIOCA project (2010-JCJC-918-01).  

REFERENCES 

 (1) Brongersma, M. S.; Shalaev, V. M. The Case for Plasmonics Science 2010, 328, 
440-441. 
 (2) Krasavin, A. V.; Zayats, A. V. Electro-optic Switching Element for Dielectric-
loaded Surface Plasmon Polariton Waveguides Appl. Phys. Lett. 2010, 97, 041107-041110. 
 (3) Krasavin, A. V.; Zayats, A. V. Guiding Light at the Nanoscale: Numerical 
Optimization of Ultrasubwavelength Metallic Wire Plasmonic Waveguides Opt. Lett. 2011, 36, 
3127-3129. 
 (4) Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A. Broadband Polarization-
independent Resonant Light Absorption Using Ultrathin Plasmonic Super Absorbers Nature 
Commun. 2011, 2, 1-7. 
 (5) Brolo, A. G. Plasmonics for Future Biosensors Nature Photonics 2012, 6, 709-
713. 
 (6) Ahmed, A.; Gordon, R. Single Molecule Directivity Enhanced Raman Scattering 
using Nanoantennas Nano Letters 2012, 12, 2625-2630. 
 (7) Asiala, S. M.; Schultz, Z. D. Characterization of Hotspots in a Highly Enhancing 
SERS Substrate Analyst 2011, 136, 4472-4479. 
 (8) Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices 
Nature Mat. 2010, 9, 205-213. 
 (9) Yokota, Y.; Ueno, K.; Misawa, H. Highly Controlled Surface-Enhanced Raman 
Scattering Chips Using Nanoengineered Gold Blocks Small 2011, 7, 252-258. 
 (10) Marquestaut, N.; Martin, A.; Talaga, D.; Servant, L.; Ravaine, S.; Reculusa, S.; 
Bassani, D. M.; Gillies, E.; Lagugné-Labarthet, F. Raman Enhancement of Azobenzene 
Monolayers on Substrates Prepared by Langmuir-Blodgett Deposition and Electron-Beam 
Lithography Techniques Langmuir 2008, 24, 11313-11321. 
 (11) Li, K.; Clime, L.; Cui, B.; Veres, T. Surface Enhanced Raman Scattering on 
Long-range Ordered Noble-metal Nanocrescent Arrays Nanotechnology 2008, 19, 145305. 
 (12) Dhawan, A.; Du, Y.; Batchelor, D.; Wang, D.; Leonard, D.; Misra, V.; Ozturk, 
M.; Gerhold, M. D.; Vo-Dinh, T. Hybrid Top-Down and Bottom-Up Fabrication Approach for 
Wafer-Scale Plasmonic Nanoplatforms Small 2011, 7, 727-731. 
 (13) Ye, X.; Qi, L. Two-dimensionally Patterned Nanostructures Based on Monolayer 
Colloidal Crystals: Controllable Fabrication, Assembly, and Applications Nano Today 2011, 6, 
608-631. 
 (14) Correia-Ledo, D.; Gibson, K.; Dhawan, A.; Couture, M.; Graham, D.; Vo-Dinh, 
T.; Masson, J. F. Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole 
Arrays of Different Size and Periodicity J. Phys. Chem.C. 2012, 116, 6884-6892. 
 (15) Abass, A.; Shen, H.; Bienstman, P.; Maes, B. Angle Insensitive Enhancement of 
Organic Solar Cells Using Metallic Gratings J. Appl. Phys. 2011, 109, 023111. 
 (16) Fischer, U. C.; Zingsheim, H. P. Submicroscopic Pattern Replication with Visible 
Light J. Vac. Sci. Technol. 1981, 19, 881-885. 



 24

 (17) Huang, W.; Qian, W.; El-Sayed, M. A.; Ding, Y.; Wang, Z. L. Effect of the 
Lattice Crystallinity on the Electron-Phonon Relaxation Rates in Gold Nanoparticles J. Phys. 
Chem. C 2007, 111, 10751-10757. 
 (18) Haynes, C. L.; Van Duyne, R. P. Plasmon-Sampled Surface-Enhanced Raman 
Excitation Spectroscopy J Phys. Chem. B 2003, 107, 7426-7433. 
 (19) Huang, W.; Qian, W.; El-Sayed, M. A. Coherent Vibrational Oscillation in Gold 
Prismatic Monolayer Periodic Nanoparticle Arrays Nano Lett. 2004, 4, 1741-1747. 
 (20) Morarescu, R.; Shen, H.; Vallée, R. A. L.; Maes, B.; Kolaric, B.; Damman, P. 
Exploiting the Localized Surface Plasmon Modes in Gold Triangular Nanoparticles for Sensing 
Applications J. Mater. Chem. 2012, 22, 11537-11542. 
 (21) Fayyaz, S.; Tabatabaei, M.; Hou, R.; Lagugné-Labarthet, F. Surface-Enhanced 
Fluorescence: Mapping Individual Hot Spots in Silica-Protected 2D Gold Nanotriangle Arrays J. 
Phys Chem. C 2012, 27, 1494-1498. 
 (22) Lenzmann, F.; Li, K.; Kitai, A. H.; Stöver, H. D. H. Thin-Film Micropatterning 
Using Polymer Microsphere Chem. Mater. 1994, 6, 156-159. 
 (23) Hubert, C.; Rumyantseva, A.; Lerondel, G.; Grand, J.; Kostcheev, S.; Billot, L.; 
Vial, A.; Bachelot, R.; Royer, P.; Chang, S. Near-Field Photochemical Imaging of Noble Metal 
Nanostructures Nano Lett. 2005, 5, 615-619. 
 (24) Hubert, C.; Bachelot, R.; Plain, J.; Kostcheev, S.; Lerondel, G.; Juan, M.; Royer, 
P.; Zou, S.; Schatz, G. C.; Wiederrecht, G. P. Near-Field Polarization Effects in Molecular-
Motion-Induced Photochemical Imaging J. Phys. Chem. C 2008, 112, 4111-4116. 
 (25) Hubert, C.; Fiorini-Debuisschert, C.; Maurin, I.; Nunzi, J.-M.; Raimond, P. 
Spontaneous Patterning of Hexagonal Structures in an Azo-Polymer Using Light-Controlled 
Mass Transport Adv. Mater. 2002, 14, 729-732. 
 (26) Murray-Méthot, M.-P. M., N.; Masson, J.-F. Analytical and Physical 
Optimization of Nano-Hole Array Sensors Prepared by Modified Nanosphere Lithography 
Analyst 2008, 133, 1714-1721. 
 (27) Guieu, V.; Lagugné-Labarthet, F.; Servant, L.; Talaga, D.; Sojic, N. Ultrasharp 
Optical-Fiber Nanoprobe Array for Raman Local-Enhancement Imaging Small 2008, 4, 96-99. 
 (28) Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; 
Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Shell-isolated 
nanoparticle-enhanced Raman spectroscopy Nature 2010, 464, 392-395. 
 (29) Chung, P.-Y.; Lin, T.-H.; Schultz, G.; Batich, C.; Jiang, P. Nanopyramid Surface 
Plasmon Resonance Sensors Appl. Phys. Lett. 2010, 96, 261108. 
 (30) Lin, T.-H.; Linn, N. C.; Tarajano, L.; Jiang, B.; Jiang, P. Electrochemical SERS at 
Periodic Metallic Nanopyramid Arrays J. Phys Chem. C 2009, 113, 1367-1372. 
 (31) Sun, C.-H.; Linn, N. C.; Jiang, P. Templated Fabrication of Periodic Metallic 
Nanopyramid Arrays Chem. Mater. 2007, 19, 4551-4556. 
 (32) Stoerzinger, K. A.; Hasan, W.; Lin, J. Y.; Robles, A.; Odom, T. W. Screening 
Nanopyramid Assemblies to Optimize Surface Enhanced Raman Scattering J. Phys. Chem. Lett. 
2010, 1, 1046-1050. 
 (33) Alexander, T. A. Applications of Surface-Enhanced Raman Spectroscopy (SERS) 
for Biosensing: An Analysis of Reproducible, Commercially Available Substrates Proc. of SPIE 
2005, 6007, 600703. 
 (34) Hartschuh, A. Tip-Enhanced Near-Field Optical Microscopy Angew. Chem. Int. 
Ed. 2008, 47, 8178-8191. 



 25

 (35) Cançado, L. G.; Jorio, A.; Ismach, A.; Joselevich, E.; Hartschuh, A.; Novotny, L. 
Mechanism of Near-Field Raman Enhancement in One-Dimensional Systems Phys. Rev. Lett. 
2009, 103, 186101. 
 (36) Schatz, G. C.; Young, M. A.; Van Duyne, R. P. In Surface-Enhanced Raman 
Scattering; Kneipp, K., Moskovits, M., Kneipp, H., Eds.; Springer-Verlag Berlin: 
Berlin/Heidelberg, 2006; Vol. 103, p 19-46. 
 (37) Schaller, R. D.; Saykally, R. J.; Shen, Y. R.; Lagugné-Labarthet, F. Poled 
Polymer Thin-Film Gratings Studied with Far-Field Optical Diffraction and Second-Harmonic 
Near-Field Microscopy Optics Letters 2003, 28, 1296-1298. 
 (38) Viswanatahan, N. K.; Balasubramanian, S.; L., L.; Tripathy, S. K.; Kumar, J. A 
Detailed Investigation of the Polarization-Dependent Surface-Relief-Grating Formation Process 
on Azo Polymer Films Jpn. J. Appl. Phys. 1999, 38, 5928-5937. 
 (39) Lefin, P.; Fiorini, C.; Nunzi, J. M. Anisotropy of the Photo-Induced Translation 
Diffusion of Azobenzene Dyes in Polymer Matrices Pure Appl. Opt. 1998, 7, 71-82. 
 (40) Kim, K.; Lee, Y. M.; Lee, H. B.; Park, Y.; Bae, T. Y.; Jung, Y. M.; Choi, C. H.; 
Shin, K. S. Visible Laser–Induced Photoreduction of Silver 4-Nitrobenzenethiolate Revealed by 
Raman Scattering Spectroscopy J. Raman Spectrosc. 2010, 41, 187-192. 
 (41) Kim, K.; Lee, I.; Lee, S. J. Photolytic Reduction of 4-nitrobenzenethiol on Au 
Mediated via Ag Nanoparticles Chem. Phys. Lett. 2003, 377, 201-204. 
 (42) Sun, S.; Birke, R. L.; Lombardi, J. R.; Leung, K. P.; Genack, A. Z. Photolysis of 
p-nitrobenzoic Acid on Roughened Silver Surfaces J. Phys. Chem. 1988, 92, 5965-5972. 
 (43) van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckerts, 
V.; Weckhuysen, B. M. Catalytic Processes Monitored at the Nanoscale with TERS Nature 
Nanotechnology 2012, 7, 583-586. 

 

Table of Content Graphic 

 

 

  



 26

Covert Art 

 

 


	Western University
	Scholarship@Western
	Summer 6-20-2013

	Plasmon-Mediated Drilling in Thin Metallic Nanostructures
	M. Tabatabaei
	A. Sangar
	N. Kazemi-Zanjani
	P. Torchio
	A. Merlen
	See next page for additional authors
	Citation of this paper:
	Authors


	Microsoft Word - JPCC-pyramids-June 18th

