2,466 research outputs found

    Stable self similar blow up dynamics for slightly L^2 supercritical NLS equations

    Full text link
    We consider the focusing nonlinear Schr\"odinger equations itu+Δu+uup1=0i\partial_t u+\Delta u +u|u|^{p-1}=0 in dimension 1N51\leq N\leq 5 and for slightly L2L^2 supercritical nonlinearities p_c with pc=1+4Np_c=1+\frac{4}{N} and 0<\e\ll 1. We prove the existence and stability in the energy space H1H^1 of a self similar finite time blow up dynamics and provide a qualitative description of the singularity formation near the blow up tim

    An interior point algorithm for minimum sum-of-squares clustering

    Get PDF
    Copyright @ 2000 SIAM PublicationsAn exact algorithm is proposed for minimum sum-of-squares nonhierarchical clustering, i.e., for partitioning a given set of points from a Euclidean m-space into a given number of clusters in order to minimize the sum of squared distances from all points to the centroid of the cluster to which they belong. This problem is expressed as a constrained hyperbolic program in 0-1 variables. The resolution method combines an interior point algorithm, i.e., a weighted analytic center column generation method, with branch-and-bound. The auxiliary problem of determining the entering column (i.e., the oracle) is an unconstrained hyperbolic program in 0-1 variables with a quadratic numerator and linear denominator. It is solved through a sequence of unconstrained quadratic programs in 0-1 variables. To accelerate resolution, variable neighborhood search heuristics are used both to get a good initial solution and to solve quickly the auxiliary problem as long as global optimality is not reached. Estimated bounds for the dual variables are deduced from the heuristic solution and used in the resolution process as a trust region. Proved minimum sum-of-squares partitions are determined for the rst time for several fairly large data sets from the literature, including Fisher's 150 iris.This research was supported by the Fonds National de la Recherche Scientifique Suisse, NSERC-Canada, and FCAR-Quebec

    General Conditions for Lepton Flavour Violation at Tree- and 1-Loop Level

    Full text link
    In this work, we compile the necessary and sufficient conditions a theory has to fulfill in order to ensure general lepton flavour conservation, in the spirit of the Glashow-Weinberg criteria for the absence of flavour-changing neutral currents. At tree-level, interactions involving electrically neutral and doubly charged bosons are investigated. We also investigate flavour changes at 1-loop level. In all cases we find that the essential theoretical requirements can be reduced to a few basic conditions on the particle content and the coupling matrices. For 1-loop diagrams, we also investigate how exactly a GIM-suppression can occur that will strongly reduce the rates of lepton flavour violating effects even if they are in principle present in a certain theory. In all chapters, we apply our criteria to several models which can in general induce lepton flavour violation, e.g. LR-symmetric models or the MSSM. In the end we give a summarizing table of the obtained results, thereby demonstrating the applicability of our criteria to a large class of models beyond the Standard Model.Comment: 31 pages, 2 figure

    Why a splitting in the final state cannot explain the GSI-Oscillations

    Full text link
    In this paper, I give a pedagogical discussion of the GSI anomaly. Using two different formulations, namely the intuitive Quantum Field Theory language of the second quantized picture as well as the language of amplitudes, I clear up the analogies and differences between the GSI anomaly and other processes (the Double Slit experiment using photons, e+eμ+μe^+ e^- \to \mu^+ \mu^- scattering, and charged pion decay). In both formulations, the conclusion is reached that the decay rate measured at GSI cannot oscillate if only Standard Model physics is involved and the initial hydrogen-like ion is no coherent superposition of more than one state (in case there is no new, yet unknown, mechanism at work). Furthermore, a discussion of the Quantum Beat phenomenon will be given, which is often assumed to be able to cause the observed oscillations. This is, however, not possible for a splitting in the final state only.Comment: 10 pages, 3 figures; matches published version (except for some stylistic ambiguities

    Stable self-similar blow-up dynamics for slightly L2L^2-supercritical generalized KdV equations

    Get PDF
    In this paper we consider the slightly L2L^2-supercritical gKdV equations tu+(uxx+uup1)x=0\partial_t u+(u_{xx}+u|u|^{p-1})_x=0, with the nonlinearity 5<p<5+ε5<p<5+\varepsilon and 0<ε10<\varepsilon\ll 1 . We will prove the existence and stability of a blow-up dynamic with self-similar blow-up rate in the energy space H1H^1 and give a specific description of the formation of the singularity near the blow-up time.Comment: 38 page
    corecore