11 research outputs found

    A multi‐omics approach identifies key regulatory pathways induced by long‐term zinc supplementation in human primary retinal pigment epithelium

    Get PDF
    In age-related macular degeneration (AMD), both systemic and local zinc levels decline. Elevation of zinc in clinical studies delayed the progression to end-stage AMD. However, the molecular pathways underpinning this beneficial effect are not yet identified. In this study, we used differentiated primary human fetal retinal pigment epithelium (RPE) cultures and long-term zinc supplementation to carry out a combined transcriptome, proteome and secretome analysis from three genetically different human donors. After combining significant differences, we identified the complex molecular networks using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA). The cell cultures from the three donors showed extensive pigmentation, development of microvilli and basal infoldings and responded to zinc supplementation with an increase in transepithelial electrical resistance (TEER) (apical supplementation: 443.2 ± 79.3%, basal supplementation: 424.9 ± 116.8%, compared to control: 317.5 ± 98.2%). Significant changes were observed in the expression of 1044 genes, 151 cellular proteins and 124 secreted proteins. Gene set enrichment analysis revealed changes in specific molecular pathways related to cell adhesion/polarity, extracellular matrix organization, protein processing/transport, and oxidative stress response by zinc and identified a key upstream regulator effect similar to that of TGFB1

    Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future

    Get PDF
    Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95%

    Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review.

    No full text
    INTRODUCTION: Exposure to blue light has seriously increased in our environment since the arrival of light emitting diodes (LEDs) and, in recent years, the proliferation of digital devices rich in blue light. This raises some questions about its potential deleterious effects on eye health. The aim of this narrative review is to provide an update on the ocular effects of blue light and to discuss the efficiency of methods of protection and prevention against potential blue light-induced ocular injury. METHODS: The search of relevant English articles was conducted in PubMed, Medline, and Google Scholar databases until December 2022. RESULTS: Blue light exposure provokes photochemical reactions in most eye tissues, in particular the cornea, the lens, and the retina. In vitro and in vivo studies have shown that certain exposures to blue light (depending on the wavelength or intensity) can cause temporary or permanent damage to some structures of the eye, especially the retina. However, currently, there is no evidence that screen use and LEDs in normal use are deleterious to the human retina. Regarding protection, there is currently no evidence of a beneficial effect of blue blocking lenses for the prevention of eye diseases, in particular age-related macular degeneration (AMD). In humans, macular pigments (composed of lutein and zeaxanthin) represent a natural protection by filtering blue light, and can be increased through increased intake from foods or food supplements. These nutrients are associated with lower risk for AMD and cataract. Antioxidants such as vitamins C, E, or zinc might also contribute to the prevention of photochemical ocular damage by preventing oxidative stress. CONCLUSION: Currently, there is no evidence that LEDs in normal use at domestic intensity levels or in screen devices are retinotoxic to the human eye. However, the potential toxicity of long-term cumulative exposure and the dose-response effect are currently unknown

    Genetic Risk, Lifestyle, and Age-Related Macular Degeneration in Europe: The EYE-RISK Consortium

    No full text
    PURPOSE: Age-related macular degeneration (AMD) is a common multifactorial disease in the elderly with a prominent genetic basis. Many risk variants have been identified, but the interpretation remains challenging. We investigated the genetic distribution of AMD-associated risk variants in a large European consortium, calculated attributable and pathway-specific genetic risks, and assessed the influence of lifestyle on genetic outcomes. DESIGN: Pooled analysis of cross-sectional data from the European Eye Epidemiology Consortium. PARTICIPANTS: Seventeen thousand one hundred seventy-four individuals 45 years of age or older participating in 6 population-based cohort studies, 2 clinic-based studies, and 1 case-control study. METHODS: Age-related macular degeneration was diagnosed and graded based on fundus photographs. Data on genetics, lifestyle, and diet were harmonized. Minor allele frequencies and population-attributable fraction (PAF) were calculated. A total genetic risk score (GRS) and pathway-specific risk scores (complement, lipid, extra-cellular matrix, other) were constructed based on the dosage of SNPs and conditional ÎČ values; a lifestyle score was constructed based on smoking and diet. MAIN OUTCOME MEASURES: Intermediate and late AMD. RESULTS: The risk variants with the largest difference between late AMD patients and control participants and the highest PAFs were located in ARMS2 (rs3750846) and CHF (rs570618 and rs10922109). Combining all genetic variants, the total genetic risk score ranged from -3.50 to 4.63 and increased with AMD severity. Of the late AMD patients, 1581 of 1777 (89%) showed a positive total GRS. The complement pathway and ARMS2 were by far the most prominent genetic pathways contributing to late AMD (positive GRS, 90% of patients with late disease), but risk in 3 pathways was most frequent (35% of patients with late disease). Lifestyle was a strong determinant of the outcome in each genetic risk category; unfavorable lifestyle increased the risk of late AMD at least 2-fold. CONCLUSIONS: Genetic risk variants contribute to late AMD in most patients. However, lifestyle factors have a strong influence on the outcome of genetic risk and should be a strong focus in patient management. Genetic risks in ARMS2 and the complement pathway are present in most late AMD patients but are mostly combined with risks in other pathways

    Predicting Progression to Advanced Age-Related Macular Degeneration from Clinical, Genetic, and Lifestyle Factors Using Machine Learning

    No full text
    PURPOSE: Current prediction models for advanced age-related macular degeneration (AMD) are based on a restrictive set of risk factors. The objective of this study was to develop a comprehensive prediction model applying a machine learning algorithm allowing selection of the most predictive risk factors automatically. DESIGN: Two population-based cohort studies. PARTICIPANTS: The Rotterdam Study I (RS-I; training set) included 3838 participants 55 years of age or older, with a median follow-up period of 10.8 years, and 108 incident cases of advanced AMD. The Antioxydants, Lipids Essentiels, Nutrition et Maladies Oculaires (ALIENOR) study (test set) included 362 participants 73 years of age or older, with a median follow-up period of 6.5 years, and 33 incident cases of advanced AMD. METHODS: The prediction model used the bootstrap least absolute shrinkage and selection operator (LASSO) method for survival analysis to select the best predictors of incident advanced AMD in the training set. Predictive performance of the model was assessed using the area under the receiver operating characteristic curve (AUC). MAIN OUTCOME MEASURES: Incident advanced AMD (atrophic, neovascular, or both), based on standardized interpretation of retinal photographs. RESULTS: The prediction model retained (1) age, (2) a combination of phenotypic predictors (based on the presence of intermediate drusen, hyperpigmentation in one or both eyes, and Age-Related Eye Disease Study simplified score), (3) a summary genetic risk score based on 49 single nucleotide polymorphisms, (4) smoking, (5) diet quality, (6) education, and (7) pulse pressure. The cross-validated AUC estimation in RS-I was 0.92 (95% confidence interval [CI], 0.88-0.97) at 5 years, 0.92 (95% CI, 0.90-0.95) at 10 years, and 0.91 (95% CI, 0.88-0.94) at 15 years. In ALIENOR, the AUC reached 0.92 at 5 years (95% CI, 0.87-0.98). In terms of calibration, the model tended to underestimate the cumulative incidence of advanced AMD for the high-risk groups, especially in ALIENOR. CONCLUSIONS: This prediction model reached high discrimination abilities, paving the way toward making precision medicine for AMD patients a reality in the near future

    Genetic Risk, Lifestyle, and Age-Related Macular Degeneration in Europe: The EYE-RISK Consortium

    Get PDF
    Purpose: Age-related macular degeneration (AMD) is a common multifactorial disease in the elderly with a prominent genetic basis. Many risk variants have been identified, but the interpretation remains challenging. We investigated the genetic distribution of AMD-associated risk variants in a large European consortium, calculated attributable and pathway-specific genetic risks, and assessed the influence of lifestyle on genetic outcomes. Design: Pooled analysis of cross-sectional data from the European Eye Epidemiology Consortium. Participants: Seventeen thousand one hundred seventy-four individuals 45 years of age or older participating in 6 population-based cohort studies, 2 clinic-based studies, and 1 case-control study. Methods: Age-related macular degeneration was diagnosed and graded based on fundus photographs. Data on genetics, lifestyle, and diet were harmonized. Minor allele frequencies and population-attributable fraction (PAF) were calculated. A total genetic risk score (GRS) and pathway-specific risk scores (complement, lipid, extra-cellular matrix, other) were constructed based on the dosage of SNPs and conditional ÎČ values; a lifestyle score was constructed based on smoking and diet. Main Outcome Measures: Intermediate and late AMD. Results: The risk variants with the largest difference between late AMD patients and control participants and the highest PAFs were located in ARMS2 (rs3750846) and CHF (rs570618 and rs10922109). Combining all genetic variants, the total genetic risk score ranged from –3.50 to 4.63 and increased with AMD severity. Of the late AMD patients, 1581 of 1777 (89%) showed a positive total GRS. The complement pathway and ARMS2 were by far the most prominent genetic pathways contributing to late AMD (positive GRS, 90% of patients with late disease), but risk in 3 pathways was most frequent (35% of patients with late disease). Lifestyle was a strong determinant of the outcome in each genetic risk category; unfavorable lifestyle increased the risk of late AMD at least 2-fold. Conclusions: Genetic risk variants contribute to late AMD in most patients. However, lifestyle factors have a strong influence on the outcome of genetic risk and should be a strong focus in patient management. Genetic risks in ARMS2 and the complement pathway are present in most late AMD patients but are mostly combined with risks in other p

    Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration: Evidence from the EYE-RISK and European Eye Epidemiology Consortia

    No full text
    Contains fulltext : 203091.pdf (publisher's version ) (Closed access)PURPOSE: Genetic and epidemiologic studies have shown that lipid genes and high-density lipoproteins (HDLs) are implicated in age-related macular degeneration (AMD). We studied circulating lipid levels in relationship to AMD in a large European dataset. DESIGN: Pooled analysis of cross-sectional data. PARTICIPANTS: Individuals (N = 30 953) aged 50 years or older participating in the European Eye Epidemiology (E3) consortium and 1530 individuals from the Rotterdam Study with lipid subfraction data. METHODS: AMD features were graded on fundus photographs using the Rotterdam classification. Routine blood lipid measurements, genetics, medication, and potential confounders were extracted from the E3 database. In a subgroup of the Rotterdam Study, lipid subfractions were identified by the Nightingale biomarker platform. Random-intercepts mixed-effects models incorporating confounders and study site as a random effect were used to estimate associations. MAIN OUTCOME MEASURES: AMD features and stage; lipid measurements. RESULTS: HDL was associated with an increased risk of AMD (odds ratio [OR], 1.21 per 1-mmol/l increase; 95% confidence interval [CI], 1.14-1.29), whereas triglycerides were associated with a decreased risk (OR, 0.94 per 1-mmol/l increase; 95% CI, 0.91-0.97). Both were associated with drusen size. Higher HDL raised the odds of larger drusen, whereas higher triglycerides decreases the odds. LDL cholesterol reached statistical significance only in the association with early AMD (P = 0.045). Regarding lipid subfractions, the concentration of extra-large HDL particles showed the most prominent association with AMD (OR, 1.24; 95% CI, 1.10-1.40). The cholesteryl ester transfer protein risk variant (rs17231506) for AMD was in line with increased HDL levels (P = 7.7 x 10(-7)), but lipase C risk variants (rs2043085, rs2070895) were associated in an opposite way (P = 1.0 x 10(-6) and P = 1.6 x 10(-4)). CONCLUSIONS: Our study suggested that HDL cholesterol is associated with increased risk of AMD and that triglycerides are negatively associated. Both show the strongest association with early AMD and drusen. Extra-large HDL subfractions seem to be drivers in the relationship with AMD, and variants in lipid genes play a more ambiguous role in this association. Whether systemic lipids directly influence AMD or represent lipid metabolism in the retina remains to be answered
    corecore