319 research outputs found

    The subcellular localization of the ChoRE-binding protein, encoded by the Williams-Beuren syndrome critical region gene 14, is regulated by 14-3-3

    Get PDF
    The Williams-Beuren syndrome (WBS) is a contiguous gene syndrome caused by chromosomal rearrangements at chromosome band 7q11.23. Several endocrine phenotypes, in particular impaired glucose tolerance and silent diabetes, have been described for this clinically complex disorder. The WBSCR14 gene, one of the genes mapping to the WBS critical region, encodes a member of the basic-helix-loop-helix leucine zipper family of transcription factors, which dimerizes with the Max-like protein, Mlx. This heterodimeric complex binds and activates, in a glucose-dependent manner, carbohydrate response element (ChoRE) motifs in the promoter of lipogenic enzymes. We identified five novel WBSCR14-interacting proteins, four 14-3-3 isotypes and NIF3L1, which form a single polypeptide complex in mammalian cells. Phosphatase treatment abrogates the association between WBSCR14 and 14-3-3, as shown previously for multiple 14-3-3 interactors. WBSCR14 is exported actively from the nucleus through a CRM1-dependent mechanism. This translocation is contingent upon the ability to bind 14-3-3. Through this mechanism the 14-3-3 isotypes directly affect the WBSCR14:Mlx complexes, which activate the transcription of lipogenic gene

    A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments.

    Get PDF
    Recent technological advances have allowed the development of portable functional Near-Infrared Spectroscopy (fNIRS) devices that can be used to perform neuroimaging in the real-world. However, as real-world experiments are designed to mimic everyday life situations, the identification of event onsets can be extremely challenging and time-consuming. Here, we present a novel analysis method based on the general linear model (GLM) least square fit analysis for the Automatic IDentification of functional Events (or AIDE) directly from real-world fNIRS neuroimaging data. In order to investigate the accuracy and feasibility of this method, as a proof-of-principle we applied the algorithm to (i) synthetic fNIRS data simulating both block-, event-related and mixed-design experiments and (ii) experimental fNIRS data recorded during a conventional lab-based task (involving maths). AIDE was able to recover functional events from simulated fNIRS data with an accuracy of 89%, 97% and 91% for the simulated block-, event-related and mixed-design experiments respectively. For the lab-based experiment, AIDE recovered more than the 66.7% of the functional events from the fNIRS experimental measured data. To illustrate the strength of this method, we then applied AIDE to fNIRS data recorded by a wearable system on one participant during a complex real-world prospective memory experiment conducted outside the lab. As part of the experiment, there were four and six events (actions where participants had to interact with a target) for the two different conditions respectively (condition 1: social-interact with a person; condition 2: non-social-interact with an object). AIDE managed to recover 3/4 events and 3/6 events for conditions 1 and 2 respectively. The identified functional events were then corresponded to behavioural data from the video recordings of the movements and actions of the participant. Our results suggest that "brain-first" rather than "behaviour-first" analysis is possible and that the present method can provide a novel solution to analyse real-world fNIRS data, filling the gap between real-life testing and functional neuroimaging

    Juvenile moyamoya and craniosynostosis in a child with deletion 1p32p31: Expanding the clinical spectrum of 1p32p31 deletion syndrome and a review of the literature

    Get PDF
    Moyamoya angiopathy (MA) is a rare cerebrovascular disorder characterised by the progressive occlusion of the internal carotid artery. Its aetiology is uncertain, but a genetic background seems likely, given the high MA familial rate. To investigate the aetiology of craniosynostosis and juvenile moyamoya in a 14-year-old male patient, we performed an array-comparative genomic hybridisation revealing a de novo interstitial deletion of 8.5 Mb in chromosome region 1p32p31. The deletion involved 34 protein coding genes, including NF1A, whose haploinsufficiency is indicated as being mainly responsible for the 1p32-p31 chromosome deletion syndrome phenotype (OMIM 613735). Our patient also has a deleted FOXD3 of the FOX gene family of transcription factors, which plays an important role in neural crest cell growth and differentiation. As the murine FOXD3-/- model shows craniofacial anomalies and abnormal common carotid artery morphology, it can be hypothesised that FOXD3 is involved in the pathogenesis of the craniofacial and vascular defects observed in our patient. In support of our assumption, we found in the literature another patient with a syndromic form of MA who had a deletion involving another FOX gene (FOXC1). In addition to describing the clinical history of our patient, we have reviewed all of the available literature concerning other patients with a 1p32p31 deletion, including cases from the Decipher database, and we have also reviewed the genetic disorders associated with MA, which is a useful guide for the diagnosis of syndromic form of MA

    Thermal alterations in patients with inflammatory diseases: a comparison between psoriatic and rheumatoid arthritis

    Get PDF
    Functional infrared imaging (fIRI) is used to provide information on circulation, thermal properties and thermoregulatory function of the cutaneous tissue in several clinical settings. This study aims to evaluate the application of fIRI in rheumatoid arthritis (RA) assessment, evaluating the thermoregulatory alterations due to joint inflammation in RA patients both in basal conditions and after a mild functional (isometric) exercise, using the same protocol we projected in our recent work on psoriatic arthritis (PsA); fIRI outcomes were compared with those provided by power-Doppler ultrasonography. Ten patients with RA and 11 healthy controls were enrolled in the study. The cutaneous temperature dynamics of 20 regions of interest located on the dominant hand were recorded by means of high-resolution thermal imaging at baseline and after a functional exercise. RA patients showed lower thermal parameters compared to healthy controls, suggesting that the RA-related inflammatory state alters the normal thermal properties of the skin overlying inflamed joints. These results are different from PsA data observed in the previous study. fIRI applied to the study of the response to a functional stimulus may represent an innovative, non-invasive, and operator-independent method for the assessment of early R

    FLU-ID (fludarabine and idarubicin) regimen as salvage therapy in pretreated low-grade non-Hodgkin's lymphoma

    Get PDF
    Fludarabine (FLU) is a new antimetabolite chemotherapeutic agent with promising activity in lymphoproliferative disorders and, in particular, in low-grade non-Hodgkin's lymphoma (LG-NHL). Recently, a few reports have described interesting results using FLU in polychemotherapy regimens. In order to evaluate FLU in combination with other antineoplastic agents, we used a combination of FLU and idarubicin, called the FLU-ID regimen, to treat 10 patients with recurrent LG-NHL. The FLU-ID regimen was as follows: FLU 25 mg/sqm i.v. on days 1 to 3 and idarubicin 12 mg/sqm i.v. on day 1. Of the 10 patients, 2 (20%) achieved complete response (CR), 5 (50%) partial response, and the remaining 3 showed no benefit from the treatment. The 2 CR patients are still in remission after 6 and 8 months, respectively. The median duration of overall survival of all patients was 8 months. The major toxic effects observed were neutropenia (40%) and infections and/or febrile episodes (15%); no fatalities due to drug side effects occurred. These results indicate the efficacy of the FLU-ID regimen in inducing a good remission rate with moderate side effects in recurrent LG-NHL

    Description of klebsiella spallanzanii sp. Nov. and of klebsiella pasteurii sp. nov

    Get PDF
    Klebsiella oxytoca causes opportunistic human infections and post-antibiotic haemorrhagic diarrhoea. This Enterobacteriaceae species is genetically heterogeneous and is currently subdivided into seven phylogroups (Ko1 to Ko4, Ko6 to Ko8). Here we investigated the taxonomic status of phylogroups Ko3 and Ko4. Genomic sequence-based phylogenetic analyses demonstrate that Ko3 and Ko4 formed well-defined sequence clusters related to, but distinct from, Klebsiella michiganensis (Ko1), Klebsiella oxytoca (Ko2), K. huaxiensis (Ko8) and K. grimontii (Ko6). The average nucleotide identity of Ko3 and Ko4 were 90.7% with K. huaxiensis and 95.5% with K. grimontii, respectively. In addition, three strains of K. huaxiensis, a species so far described based on a single strain from a urinary tract infection patient in China, were isolated from cattle and human faeces. Biochemical and MALDI-ToF mass spectrometry analysis allowed differentiating Ko3, Ko4 and Ko8 from the other K. oxytoca species. Based on these results, we propose the names Klebsiella spallanzanii for the Ko3 phylogroup, with SPARK_775_C1T (CIP 111695T, DSM 109531T) as type strain, and Klebsiella pasteurii for Ko4, with SPARK_836_C1T (CIP 111696T, DSM 109530T) as type strain. Strains of K. spallanzanii were isolated from human urine, cow faeces and farm surfaces, while strains of K. pasteurii were found in faecal carriage from humans, cows and turtles

    Expanding the phenotype associated to KMT2A variants: overlapping clinical signs between Wiedemann–Steiner and Rubinstein–Taybi syndromes

    Get PDF
    Lysine-specific methyltransferase 2A (KMT2A) is responsible for methylation of histone H3 (K4H3me) and contributes to chromatin remodeling, acting as \u201cwriter\u201d of the epigenetic machinery. Mutations in KMT2A were first reported in Wiedemann\u2013Steiner syndrome (WDSTS). More recently, KMT2A variants have been described in probands with a specific clinical diagnosis comprised in the so-called chromatinopathies. Such conditions, including WDSTS, are a group of overlapping disorders caused by mutations in genes coding for the epigenetic machinery. Among them, Rubinstein\u2013Taybi syndrome (RSTS) is mainly caused by heterozygous pathogenic variants in CREBBP or EP300. In this work, we used next generation sequencing (either by custom-made panel or by whole exome) to identify alternative causative genes in individuals with a RSTS-like phenotype negative to CREBBP and EP300 mutational screening. In six patients we identified different novel unreported variants in KMT2A gene. The identified variants are de novo in at least four out of six tested individuals and all of them display some typical RSTS phenotypic features but also WDSTS specific signs. This study reinforces the concept that germline variants affecting the epigenetic machinery lead to a shared molecular effect (alteration of the chromatin state) determining superimposable clinical conditions

    TRIM50 regulates Beclin 1 proautophagic activity

    Get PDF
    Autophagy is a catabolic process needed for maintaining cell viability and homeostasis in response to numerous stress conditions. Emerging evidence indicates that the ubiquitin system has a major role in this process. TRIMs, an E3 ligase protein family, contribute to selective autophagy acting as receptors and regulators of the autophagy proteins recognizing endogenous or exogenous targets through intermediary autophagic tags, such as ubiquitin. Here we report that TRIM50 fosters the initiation phase of starvation-induced autophagy and associates with Beclin1, a central component of autophagy initiation complex. We show that TRIM50, via the RING domain, ubiquitinates Beclin 1 in a K63-dependent manner enhancing its binding with ULK1 and autophagy activity. Finally, we found that the Lys-372 residue of TRIM50, critical for its own acetylation, is necessary for its E3 ligase activity that governs Beclin1 ubiquitination. Our study expands the roles of TRIMs in regulating selective autophagy, revealing an acetylation-ubiquitination dependent control for autophagy modulation. © 2018 Elsevier B.V
    corecore