1,023 research outputs found

    Demonstration of three-dimensional electrostatic trapping of state-selected rydberg atoms

    Get PDF
    A three-dimensional trap for Rydberg atoms in selected Stark states has been realized experimentally. H atoms seeded in a supersonic expansion of Ar are excited to the low-field seeking n=30, k=25, |m|=0, 2 Rydberg-Stark states, decelerated from a mean initial velocity of 665m/s to zero velocity in the laboratory frame and loaded into a three-dimensional electrostatic trap. The motion of the cold Rydberg atom cloud in the trap and the decay of the trapped atoms have been studied by pulsed electric field ionization and imaging techniques

    Rydberg-state-enabled deceleration and trapping of cold molecules

    Get PDF
    Hydrogen molecules in selected core-nonpenetrating Rydberg-Stark states have been decelerated from a mean initial velocity of 500m/s to zero velocity in the laboratory frame and loaded into a three-dimensional electrostatic trap. Trapping times, measured by pulsed electric field ionization of the trapped molecules, are found to be limited by collisional processes. As Rydberg states can be deexcited to the absolute ground state, the method can be applied to generate cold samples of a wide range of species. © 2009 The American Physical Society

    Simple reflection anisotropy microscopy set-up for CO oxidation studies

    Get PDF
    Reflection anisotropy microscopy (RAM) is a tool to monitor the optical anisotropy of surfaces with spatial resolution (Rotermund et al 1995 Science 270 608–10). It has been applied to pattern formation during CO oxidation on Pt(110), where it provides a high sensitivity for surface reconstruction and partially also for the coverage with reaction educts (Heumann 2000 Dissertation TU-Berlin). However, the spatial resolution of RAM and the alignment procedure of the optical components were not satisfactory. Here, we give a detailed description of a new set-up, which employs a simple polarizing beam splitter cube as an analyser instead of a Foster prism, offering a higher spatial resolution (<10 μm) and easier alignment of the optical components while retaining the high sensitivity for surface structure. Polarization contrast and spatial resolution of the new set-up are systematically measured, and applications to CO oxidation on uniform and microstructured Pt(110) single crystals are presented

    Driving Rydberg-Rydberg transitions from a co-planar microwave waveguide

    Get PDF
    The coherent interaction between ensembles of helium Rydberg atoms and microwave fields in the vicinity of a solid-state co-planar waveguide is reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38 GHz, have been studied for states with principal quantum numbers in the range 30 - 35 by selective electric-field ionization. An experimental apparatus cooled to 100 K was used to reduce effects of blackbody radiation. Inhomogeneous, stray electric fields emanating from the surface of the waveguide have been characterized in frequency- and time-resolved measurements and coherence times of the Rydberg atoms on the order of 250 ns have been determined.Comment: 5 pages, 5 figure

    Vacuum-ultraviolet frequency-modulation spectroscopy

    Full text link
    Frequency-modulation (FM) spectroscopy has been extended to the vacuum-ultraviolet (VUV) range of the electromagnetic spectrum. Coherent VUV laser radiation is produced by resonance-enhanced sum-frequency mixing (νVUV=2νUV+ν2\nu_{\mathrm{VUV}}=2\nu_{\mathrm{UV}}+\nu_2) in Kr and Xe using two near-Fourier-transform-limited laser pulses of frequencies νUV\nu_{\mathrm{UV}} and ν2\nu_2. Sidebands generated in the output of the second laser (ν2\nu_2) using an electro-optical modulator operating at the frequency νmod\nu_{\mathrm{mod}} are directly transfered to the VUV and used to record FM spectra. Demodulation is demonstrated both at νmod\nu_{\mathrm{mod}} and 2νmod2\nu_{\mathrm{mod}}. The main advantages of the method are that its sensitivity is not reduced by pulse-to-pulse fluctuations of the VUV laser intensity, compared to VUV absorption spectroscopy is its background-free nature, the fact that its implementation using table-top laser equipment is straightforward and that it can be used to record VUV absorption spectra of cold samples in skimmed supersonic beams simultaneously with laser-induced-fluorescence and photoionization spectra. To illustrate these advantages we present VUV FM spectra of Ar, Kr, and N2_2 in selected regions between 105000cm−1^{-1} and 122000cm−1^{-1}.Comment: 23 pages, 10 figure

    Imaging electric fields in the vicinity of cryogenic surfaces using Rydberg atoms

    Full text link
    The ability to characterize static and time-dependent electric fields in situ is an important prerequisite for quantum-optics experiments with atoms close to surfaces. Especially in experiments which aim at coupling Rydberg atoms to the near field of superconducting circuits, the identification and subsequent elimination of sources of stray fields is crucial. We present a technique that allows the determination of stray-electric-field distributions (Fxstr(r⃗),Fystr(r⃗),Fzstr(r⃗))(F^\text{str}_\text{x}(\vec{r}),F^\text{str}_\text{y}(\vec{r}),F^\text{str}_\text{z}(\vec{r})) at distances of less than 2 mm2~\text{mm} from (cryogenic) surfaces using coherent Rydberg-Stark spectroscopy in a pulsed supersonic beam of metastable 1s12s1 1S01\text{s}^12\text{s}^1~{}^{1}S_{0} helium atoms. We demonstrate the capabilities of this technique by characterizing the electric stray field emanating from a structured superconducting surface. Exploiting coherent population transfer with microwave radiation from a coplanar waveguide, the same technique allows the characterization of the microwave-field distribution above the surface.Comment: 6 pages, 4 figure

    Measurement of the three-dimensional velocity distribution of Stark-decelerated Rydberg atoms

    Get PDF
    Abstract.: The full three-dimensional velocity distributions of decelerated and accelerated particles in a Stark decelerator for Rydberg atoms and molecules have been measured. In the experiment, argon atoms in a supersonic beam are excited to low-field and high-field seeking Stark states with principal quantum number in the range n=15 to 25 and are decelerated in a 3 mm long decelerator consisting of four electrodes on which time-dependent voltages are applied. The time dependence of the resulting inhomogeneous electric field is chosen such that the decelerating force acting on the high-field seeking states is maximized at each point along the trajectories. The three-dimensional velocity distribution of the atoms before and after the deceleration is determined by measuring times of flight and two-dimensional images of the atomic cloud on the detector. Under optimal deceleration conditions, the decrease in kinetic energy in the longitudinal dimension amounts to 1.0×10-21 J and the increase in mean kinetic energy in the transverse dimensions is only 1.0×10-23 J. The corresponding temperatures of 100 mK and 300 mK in the two transverse dimensions are sufficiently low that trapping can be envisaged. The possibility of focusing a Rydberg atom beam is demonstrated experimentall

    Measuring the dispersive frequency shift of a rectangular microwave cavity induced by an ensemble of Rydberg atoms

    Full text link
    In recent years the interest in studying interactions of Rydberg atoms or ensembles thereof with optical and microwave frequency fields has steadily increased, both in the context of basic research and for potential applications in quantum information processing. We present measurements of the dispersive interaction between an ensemble of helium atoms in the 37s Rydberg state and a single resonator mode by extracting the amplitude and phase change of a weak microwave probe tone transmitted through the cavity. The results are in quantitative agreement with predictions made on the basis of the dispersive Tavis-Cummings Hamiltonian. We study this system with the goal of realizing a hybrid between superconducting circuits and Rydberg atoms. We measure maximal collective coupling strengths of 1 MHz, corresponding to 3*10^3 Rydberg atoms coupled to the cavity. As expected, the dispersive shift is found to be inversely proportional to the atom-cavity detuning and proportional to the number of Rydberg atoms. This possibility of measuring the number of Rydberg atoms in a nondestructive manner is relevant for quantitatively evaluating scattering cross sections in experiments with Rydberg atoms

    Magnetic trapping of hydrogen after multistage zeeman deceleration

    Get PDF
    We report the first experimental realization of magnetic trapping of a sample of cold radicals following multistage Zeeman deceleration of a pulsed supersonic beam. Hatoms seeded in a supersonic expansion of Kr have been decelerated from an initial velocity of 520m/s to 100m/s in a 12-stage Zeeman decelerator and loaded into a magnetic quadrupole trap by rapidly switching the fields of the trap solenoids. © 2008 The American Physical Society

    Spectra of Harmonium in a magnetic field using an initial value representation of the semiclassical propagator

    Full text link
    For two Coulombically interacting electrons in a quantum dot with harmonic confinement and a constant magnetic field, we show that time-dependent semiclassical calculations using the Herman-Kluk initial value representation of the propagator lead to eigenvalues of the same accuracy as WKB calculations with Langer correction. The latter are restricted to integrable systems, however, whereas the time-dependent initial value approach allows for applications to high-dimensional, possibly chaotic dynamics and is extendable to arbitrary shapes of the potential.Comment: 11 pages, 1 figur
    • …
    corecore