15 research outputs found

    Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with traumatic brain injury (TBI) often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures.</p> <p>Methods</p> <p>Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM) that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI). Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p < 0.05 criterion, corrected for multiple comparisons. False positive rates were verified by comparing the data from each control subject with the data from the remaining control population using identical statistical procedures.</p> <p>Results</p> <p>The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes.</p> <p>Conclusions</p> <p>MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.</p

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Regional network of magnetic resonance imaging gray matter volume in healthy aging

    No full text
    Healthy aging has been associated with brain volume reductions preferentially affecting the frontal cortex, but also involving other regions. We used a network model of regional covariance, the Scaled Subprofile Model, with magnetic resonance imaging voxel-based morphometry to identify the regional distribution of gray matter associated with aging in 26 healthy adults, 22-77 years old. Scaled Subprofile Model analysis identified a pattern that was highly correlated with age (R2=0.66,

    White Matter Disruption in Pediatric Traumatic Brain Injury Results From ENIGMA Pediatric Moderate to Severe Traumatic Brain Injury

    Full text link
    ObjectiveOur study addressed aims (1) to test the hypothesis that moderate-severe traumatic brain injury (TBI) in pediatric patients is associated with widespread white matter (WM) disruption, (2) to test the hypothesis that age and sex affect WM organization after injury, and (3) to examine associations between WM organization and neurobehavioral outcomes.MethodsData from 10 previously enrolled, existing cohorts recruited from local hospitals and clinics were shared with the Enhancing NeuroImaging Genetics Through Meta-Analysis (ENIGMA) Pediatric Moderate/Severe TBI (msTBI) working group. We conducted a coordinated analysis of diffusion MRI (dMRI) data using the ENIGMA dMRI processing pipeline.ResultsFive hundred seven children and adolescents (244 with complicated msTBI and 263 controls) were included. Patients were clustered into 3 postinjury intervals: acute/subacute, &lt;2 months; postacute, 2 to 6 months; and chronic, ≄6 months. Outcomes were dMRI metrics and postinjury behavioral problems as indexed by the Child Behavior Checklist. Our analyses revealed altered WM diffusion metrics across multiple tracts and all postinjury intervals (effect sizes range d = −0.5 to −1.3). Injury severity is a significant contributor to the extent of WM alterations but explained less variance in dMRI measures with increasing time after injury. We observed a sex-by-group interaction: female patients with TBI had significantly lower fractional anisotropy in the uncinate fasciculus than controls (ÎČ = 0.043), which coincided with more parent-reported behavioral problems (ÎČ = −0.0027).ConclusionsWM disruption after msTBI is widespread, persistent, and influenced by demographic and clinical variables. Future work will test techniques for harmonizing neurocognitive data, enabling more advanced analyses to identify symptom clusters and clinically meaningful patient subtypes.</jats:sec
    corecore