1,033 research outputs found

    Breakdown of the Landauer bound for information erasure in the quantum regime

    Full text link
    A known aspect of the Clausius inequality is that an equilibrium system subjected to a squeezing \d S of its entropy must release at least an amount |\dbarrm Q|=T|\d S| of heat. This serves as a basis for the Landauer principle, which puts a lower bound Tln2T\ln 2 for the heat generated by erasure of one bit of information. Here we show that in the world of quantum entanglement this law is broken. A quantum Brownian particle interacting with its thermal bath can either generate less heat or even {\it adsorb} heat during an analogous squeezing process, due to entanglement with the bath. The effect exists even for weak but fixed coupling with the bath, provided that temperature is low enough. This invalidates the Landauer bound in the quantum regime, and suggests that quantum carriers of information can be much more efficient than assumed so far.Comment: 13 pages, revtex, 2 eps figure

    Broadband decoupled, 1H-localized 13C MRS of the human brain at 4 Tesla

    Get PDF
    Broadband proton decoupling of the entire 13C spectrum was possible within power absorption guidelines and resulted in the detection of narrow (as low as 2-3 Hz), natural abundance signals from metabolites such as myo- inositol, glutamate, N-acetyl-aspartate, and glutamine from 72 cm3 volumes in the human brain. To overcome the chemical shift displacement error, three- dimensional localization on the 1H z magnetization was combined with polarization transfer. Efficiency of the heteronuclear localization method was demonstrated by the elimination of all scalp lipid resonances. A signal- to-noise ratio of 5:1 for 0.07 mM [13C] was achieved in 12 min, which is approximately a fivefold improvement over the sensitivity reported at 2.1 Tesla

    Human phosphodiesterase 4D7 (PDE4D7) expression is increased in TMPRSS2-ERG positive primary prostate cancer and independently adds to a reduced risk of post-surgical disease progression

    Get PDF
    background: There is an acute need to uncover biomarkers that reflect the molecular pathologies, underpinning prostate cancer progression and poor patient outcome. We have previously demonstrated that in prostate cancer cell lines PDE4D7 is downregulated in advanced cases of the disease. To investigate further the prognostic power of PDE4D7 expression during prostate cancer progression and assess how downregulation of this PDE isoform may affect disease outcome, we have examined PDE4D7 expression in physiologically relevant primary human samples. methods: About 1405 patient samples across 8 publically available qPCR, Affymetrix Exon 1.0 ST arrays and RNA sequencing data sets were screened for PDE4D7 expression. The TMPRSS2-ERG gene rearrangement status of patient samples was determined by transformation of the exon array and RNA seq expression data to robust z-scores followed by the application of a threshold >3 to define a positive TMPRSS2-ERG gene fusion event in a tumour sample. results: We demonstrate that PDE4D7 expression positively correlates with primary tumour development. We also show a positive association with the highly prostate cancer-specific gene rearrangement between TMPRSS2 and the ETS transcription factor family member ERG. In addition, we find that in primary TMPRSS2-ERG-positive tumours PDE4D7 expression is significantly positively correlated with low-grade disease and a reduced likelihood of progression after primary treatment. Conversely, PDE4D7 transcript levels become significantly decreased in castration resistant prostate cancer (CRPC). conclusions: We further characterise and add physiological relevance to PDE4D7 as a novel marker that is associated with the development and progression of prostate tumours. We propose that the assessment of PDE4D7 levels may provide a novel, independent predictor of post-surgical disease progression

    In vivo 1H NMR spectroscopy of the human brain at 7 T

    Get PDF
    In vivo 1H NMR spectra from the human brain were measured at 7 T. Ultrashort echo-time STEAM was used to minimize J-modulation and signal attenuation caused by the shorter T2 of metabolites. Precise adjustment of higher-order shims, which was achieved with FASTMAP, was crucial to benefit from this high magnetic field. Sensitivity improvements were evident from single-shot spectra and from the direct detection of glucose at 5.23 ppm in 8-ml volumes. The linewidth of the creatine methyl resonance was at best 9 Hz. In spite of the increased linewidth of singlet resonances at 7 T, the ability to resolve overlapping multiplets of J-coupled spin systems, such as glutamine and glutamate, was substantially increased. Characteristic spectral patterns of metabolites, e.g., myo-inositol and taurine, were discernible in the in vivo spectra, which facilitated an unambiguous signal assignment. © 2001 Wiley-Liss, Inc

    Number partitioning as random energy model

    Full text link
    Number partitioning is a classical problem from combinatorial optimisation. In physical terms it corresponds to a long range anti-ferromagnetic Ising spin glass. It has been rigorously proven that the low lying energies of number partitioning behave like uncorrelated random variables. We claim that neighbouring energy levels are uncorrelated almost everywhere on the energy axis, and that energetically adjacent configurations are uncorrelated, too. Apparently there is no relation between geometry (configuration) and energy that could be exploited by an optimization algorithm. This ``local random energy'' picture of number partitioning is corroborated by numerical simulations and heuristic arguments.Comment: 8+2 pages, 9 figures, PDF onl

    Developing Sensorimotor Countermeasures to Mitigate Post-Flight Locomotor Dysfunction

    Get PDF
    Following spaceflight, crewmembers experience postural and locomotor instability. The magnitude and duration of post-flight sensorimotor disturbances increase with longer duration exposure to microgravity. These post-flight postural and locomotor alterations can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. Gait instabilities could prevent or extend the time required to make an emergency egress from the Orbiter, Crew Return Vehicle or a future Martian lander leading to compromised mission objectives. We propose a countermeasure that aids in maintaining functional locomotor performance. This includes retaining the ability to perform vehicular egress and meet early mission objectives soon after landing on a planetary surface

    Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel

    Get PDF
    Creep cavitation in an ex-service nuclear steam header Type 316 stainless steel sample is investigated through a multiscale tomography workflow spanning eight orders of magnitude, combining X-ray computed tomography (CT), plasma focused ion beam (FIB) scanning electron microscope (SEM) imaging and scanning transmission electron microscope (STEM) tomography. Guided by microscale X-ray CT, nanoscale X-ray CT is used to investigate the size and morphology of cavities at a triple point of grain boundaries. In order to understand the factors affecting the extent of cavitation, the orientation and crystallographic misorientation of each boundary is characterised using electron backscatter diffraction (EBSD). Additionally, in order to better understand boundary phase growth, the chemistry of a single boundary and its associated secondary phase precipitates is probed through STEM energy dispersive X-ray (EDX) tomography. The difference in cavitation of the three grain boundaries investigated suggests that the orientation of grain boundaries with respect to the direction of principal stress is important in the promotion of cavity formation

    Analysis of frame-compatible subsampling structures for efficient 3DTV broadcast

    Get PDF
    The evolution of the television market is led by 3DTV technology, and this tendency can accelerate during the next years according to expert forecasts. However, 3DTV delivery by broadcast networks is not currently developed enough, and acts as a bottleneck for the complete deployment of the technology. Thus, increasing interest is dedicated to ste-reo 3DTV formats compatible with current HDTV video equipment and infrastructure, as they may greatly encourage 3D acceptance. In this paper, different subsampling schemes for HDTV compatible transmission of both progressive and interlaced stereo 3DTV are studied and compared. The frequency characteristics and preserved frequency content of each scheme are analyzed, and a simple interpolation filter is specially designed. Finally, the advantages and disadvantages of the different schemes and filters are evaluated through quality testing on several progressive and interlaced video sequences

    Habitat shifts in response to predation risk are constrained by competition within a grazing guild

    Get PDF
    Predators can affect prey not only by killing them, but also by causing them to alter their behavior, including patterns of habitat selection. Prey can reduce the risk of predation by moving to habitats where predators are less likely to detect them, less likely to attack, or less likely to succeed. The interaction of such responses to risk with other ecological processes remains relatively unstudied, but in some cases, changes in habitat use to avoid predation may be constrained by competition: larger, dominant competitors should respond freely to predation risk, but the responses of smaller, subordinate competitors may be constrained by the responses of dominant competitors. For large grazing herbivores, an alternative hypothesis proposes that smaller prey species are vulnerable to more predators, and thus should respond more strongly to predation risk. Here, we tested these two hypotheses with 775 observations of habitat selection by four species of obligate grazers (zebra, wildebeest, puku and oribi) in the immediate presence or absence of four large carnivores (lion, spotted hyena, African wild dog and cheetah) in three ecosystems (Greater Liuwa, Greater Kafue and Luangwa Valley). Patterns of predation within this set were described by observation of 1,105 kills. Our results support the hypothesis that responses to predation risk are strongest for larger, dominant competitors. Even though zebras were killed least often, they showed the strongest shift into cover when carnivores were present. Wildebeest, puku and oribi showed weaker habitat shifts, even though they were more frequently killed. These patterns remained consistent in models that controlled for differences in the hunting mode of the predator (stalking, coursing, or intermediate) and for differences among ecosystems. There was no evidence that smaller species were subject to predation by a broader set of predators. Instead, smaller prey were killed often by smaller predators, and larger prey were killed often by larger predators. Broadly, our results show that responses to predation risk interact with interspecific competition. Accounting for such interactions should help to explain the considerable variation in the strength of responses to predation risk that has been observed
    corecore