6,920 research outputs found

    Competition between Charge Ordering and Superconductivity in Layered Organic Conductors α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 (M = K, NH4_4)

    Full text link
    While the optical properties of the superconducting salt α\alpha-(BEDT-TTF)2_2NH4_4Hg(SCN)4_4 remain metallic down to 2 K, in the non-superconducting K-analog a pseudogap develops at frequencies of about 200 cm1^{-1} for temperatures T < 200 K. Based on exact diagonalisation calculations on an extended Hubbard model at quarter-filling we argue that fluctuations associated with short range charge ordering are responsible for the observed low-frequency feature. The different ground states, including superconductivity, are a consequence of the proximity of these compounds to a quantum phase charge-ordering transition driven by the intermolecular Coulomb repulsion.Comment: 4 pages, 3 figure

    13C NMR study of superconductivity near charge instability realized in beta"-(BEDT-TTF)4[(H3O)Ga(C2O4)3]C6H5NO2

    Full text link
    To investigate the superconducting (SC) state near a charge instability, we performed ^{13}C NMR experiments on the molecular superconductor beta"-(BEDT-TTF)_{4}[(H_{3}O)Ga(C_{2}O_{4})_{3}]C_{6}H_{5}NO_{2}, which exhibits a charge anomaly at 100 K. The Knight shift which we measured in the SC state down to 1.5 K demonstrates that Cooper pairs are in spin-singlet state. Measurements of the nuclear spin-lattice relaxation time reveal strong electron-electron correlations in the normal state. The resistivity increase observed below 10 K indicates that the enhanced fluctuation has an electric origin. We discuss the possibility of charge-fluctuation-induced superconductivity.Comment: 5 pages, 4 figure

    Spin Liquid State in an Organic Mott Insulator with Triangular Lattice

    Get PDF
    1^{1}H NMR and static susceptibility measurements have been performed in an organic Mott insulator with nearly isotropic triangular lattice, κ\kappa-(BEDT-TTF)2_{2}Cu2_{2}(CN)3_{3}, which is a model system of frustrated quantum spins. The static susceptibility is described by the spin SS = 1/2 antiferromagnetic triangular-lattice Heisenberg model with the exchange constant JJ \sim 250 K. Regardless of the large magnetic interactions, the 1^{1}H NMR spectra show no indication of long-range magnetic ordering down to 32 mK, which is four-orders of magnitude smaller than JJ. These results suggest that a quantum spin liquid state is realized in the close proximity of the superconducting state appearing under pressure.Comment: 4 pages, 4 figure

    Determination of the combined effect of grape seed extract and cold atmospheric plasma on foodborne pathogens and their environmental stress knockout mutants

    Get PDF
    The aim of this study was to explore the antimicrobial efficacy of grape seed extract (GSE) and cold atmospheric plasma (CAP) individually or in combination against L. monocytogenes and E. coli wild type (WT) and their isogenic mutants in environmental stress genes. More specifically, we examined the effects of 1 % (w/v) GSE, 4 min of CAP treatment, and their combined effect on L. monocytogenes 10403S WT and its isogenic mutants ΔsigB, ΔgadD1, ΔgadD2, ΔgadD3, as well as E. coli K12 and its isogenic mutants ΔrpoS, ΔoxyR, ΔdnaK. Additionally, the sequence of the combined treatments was tested. A synergistic effect was achieved for all L. monocytogenes strains when exposure to GSE was followed by CAP 31 treatment. However, the same effect was observed against E. coli strains, only for the reversed treatment sequence. Additionally, L. monocytogenes ΔsigB was more sensitive to the individual GSE and the combined GSE/CAP treatment, whereas ΔgadD2 was more sensitive to CAP, as compared to the rest of the mutants under study. Individual GSE exposure was unable to inhibit E. coli strains, and individual CAP treatment resulted in higher inactivation of E. coli in comparison to L. monocytogenes with the strain ΔrpoS appearing the most sensitive among all studied strains. Our findings provide a step towards a better understanding of the mechanisms playing a role in tolerance/sensitivity of our model Gram-positive and Gram negative bacteria towards GSE, CAP and their combination. Therefore, our results contribute to the development of more effective and targeted antimicrobial strategies for sustainable decontamination

    Superconductivity in Na_xCoO_2yH_2O by charge fluctuation

    Full text link
    A new mechanism for superconductivity in the newly discovered Co-based oxide is proposed by using charge fluctuation. A single-band extended Hubbard model on the triangular lattice is studied within random phase approximation. ff-wave triplet superconductivity is stabilized in the vicinity of charge-density-wave instability, which is in sharp contrast with the square-lattice case. The physical origin of the realization of the ff-wave triplet state as well as the relevance to experiments are discussed

    Feynman scaling violation on baryon spectra in pp collisions at LHC and cosmic ray energies

    Full text link
    A significant asymmetry in baryon/antibaryon yields in the central region of high energy collisions is observed when the initial state has non-zero baryon charge. This asymmetry is connected with the possibility of baryon charge diffusion in rapidity space. Such a diffusion should decrease the baryon charge in the fragmentation region and translate into the corresponding decrease of the multiplicity of leading baryons. As a result, a new mechanism for Feynman scaling violation in the fragmentation region is obtained. Another numerically more significant reason for the Feynman scaling violation comes from the fact that the average number of cutted Pomerons increases with initial energy. We present the quantitative predictions of the Quark-Gluon String Model (QGSM) for the Feynman scaling violation at LHC energies and at even higher energies that can be important for cosmic ray physics.Comment: 21 pages, 11 figures, and 1 table. arXiv admin note: substantial text overlap with arXiv:1107.1615, arXiv:1007.320

    Ferromagnetism, paramagnetism and a Curie-Weiss metal in an electron doped Hubbard model on a triangular lattice

    Get PDF
    Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative inter-site hopping amplitudes (t<0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t>0 a large enhancement of the effective mass, ferromagnetism and a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e. ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. We propose that `Curie-Weiss metal' phase observed in NaxCoO2 is a consequence of the crossover from ``bad metal'' with incoherent quasiparticles at temperatures T>T* and Fermi liquid behavior with enhanced parameters below T*, where T* is a low energy coherence scale induced by strong local Coulomb electron correlations. We propose a model which contains the charge ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.Comment: 24 pages, 15 figures; accepted for publication in Phys. Rev.

    Correlation gap in the optical spectra of the two-dimensional organic metal (BEDT-TTF)_4[Ni(dto)_2]

    Full text link
    Optical reflection measurements within the highly conducting (a,b)-plane of the organic metal (BEDT-TTF)_4[Ni(dto)_2] reveal the gradual development of a sharp feature at around 200 cm as the temperature is reduced below 150 K. Below this frequency a narrow Drude-like response is observed which accounts for the metallic behavior. Since de Haas-von Alphen oscillations at low temperatures confirm band structure calculations of bands crossing the Fermi energy, we assign the observed behavior to a two-dimensional metallic state in the proximity of a correlation induced metal-insulator transition.Comment: 4 pages, 2 figure

    Phase Diagram of Spinless Fermions on an Anisotropic Triangular Lattice at Half-filling

    Full text link
    The strong coupling phase diagram of the spinless fermions on the anisotropic triangular lattice at half-filling is presented. The geometry of inter-site Coulomb interactions rules the phase diagram. Unconventional charge ordered phases are detected which are the recently reported pinball liquid and the striped chains. Both are induced by the quantum dynamics out of classical disordered states and afford extremely correlated metallic states and the particular domain wall-type of excitations, respectively. The disorder once killed by the quantum effect revives at the finite temperature, which is discussed in the terms of the organic θ\theta-ET2X_2X.Comment: 4pages 6figure
    corecore