13 research outputs found

    DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase

    Get PDF
    Contains fulltext : 138677.pdf (publisher's version ) (Open Access)Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the "Pattern Finder" G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase

    Symmetric and dissymmetric carbohydrate-phenyl ditriazole derivatives as DNA G-quadruplex ligands: Synthesis, biophysical studies and antiproliferative activity

    No full text
    Here we present a novel G4-binding family of compounds based on a central core of phenyl ditriazole (PDTZ) modified with carbohydrates and phenyl pyrrolidinyl side-chains. Their synthesis was achieved using controlled click chemistry conditions to obtain both, symmetric and dissymmetric carb-PDTZ derivatives without any intermediate protecting steps through an optimized methodology. Binding of the new carb-PDTZ to a variety of G-quadruplex motifs was examined using different biophysical techniques. The symmetric carb-PDTZ derivatives were not able to stabilize G4, but the dissymmetric ones (containing one sugar and one phenyl pyrrolidinyl side-chain) did. Interestingly, the dissymmetric carb-PDTZ derivatives showed much higher G4 vs duplex DNA selectivity than the control compound PDTZ 1, which contains two phenyl pyrrodilinyl side-chains and no carbohydrates. Their potential antitumoral activity was also investigated by in vitro cytotoxicity measurements on different cancerous cell lines. All carb-PDTZ derivatives showed higher IC values than the control PDTZ 1, probably due to the lack of compound stability of some derivatives and to lower cellular uptake

    Involvement of G-quadruplex regions in mammalian replication origin activity.

    No full text
    Genome-wide studies of DNA replication origins revealed that origins preferentially associate with an Origin G-rich Repeated Element (OGRE), potentially forming G-quadruplexes (G4). Here, we functionally address their requirements for DNA replication initiation in a series of independent approaches. Deletion of the OGRE/G4 sequence strongly decreased the corresponding origin activity. Conversely, the insertion of an OGRE/G4 element created a new replication origin. This element also promoted replication of episomal EBV vectors lacking the viral origin, but not if the OGRE/G4 sequence was deleted. A potent G4 ligand, PhenDC3, stabilized G4s but did not alter the global origin activity. However, a set of new, G4-associated origins was created, whereas suppressed origins were largely G4-free. In vitro Xenopus laevis replication systems showed that OGRE/G4 sequences are involved in the activation of DNA replication, but not in the pre-replication complex formation. Altogether, these results converge to the functional importance of OGRE/G4 elements in DNA replication initiation

    Targeting human telomerase for cancer therapeutics

    No full text
    corecore