19 research outputs found
The Third Fermi Large Area Telescope Catalog of Gamma-ray Pulsars
We present 294 pulsars found in GeV data from the Large Area Telescope (LAT)
on the Fermi Gamma-ray Space Telescope. Another 33 millisecond pulsars (MSPs)
discovered in deep radio searches of LAT sources will likely reveal pulsations
once phase-connected rotation ephemerides are achieved. A further dozen optical
and/or X-ray binary systems co-located with LAT sources also likely harbor
gamma-ray MSPs. This catalog thus reports roughly 340 gamma-ray pulsars and
candidates, 10% of all known pulsars, compared to known before Fermi.
Half of the gamma-ray pulsars are young. Of these, the half that are undetected
in radio have a broader Galactic latitude distribution than the young
radio-loud pulsars. The others are MSPs, with 6 undetected in radio. Overall,
>235 are bright enough above 50 MeV to fit the pulse profile, the energy
spectrum, or both. For the common two-peaked profiles, the gamma-ray peak
closest to the magnetic pole crossing generally has a softer spectrum. The
spectral energy distributions tend to narrow as the spindown power
decreases to its observed minimum near erg s, approaching the
shape for synchrotron radiation from monoenergetic electrons. We calculate
gamma-ray luminosities when distances are available. Our all-sky gamma-ray
sensitivity map is useful for population syntheses. The electronic catalog
version provides gamma-ray pulsar ephemerides, properties and fit results to
guide and be compared with modeling results.Comment: 142 pages. Accepted by the Astrophysical Journal Supplemen
Outcomes before and after Implementation of the ERAS (Enhanced Recovery after Surgery) Protocol in Open and Laparoscopic Colorectal Surgery: A Comparative Real-World Study from Northern Italy
Enhanced Recovery After Surgery (ERAS) protocols have changed perioperative care, aiming to optimize patient outcomes. This study assesses ERAS implementation effects on postoperative complications, length of hospital stay (LOS), and mortality in colorectal cancer (CRC) patients. A retrospective real-world analysis was conducted on CRC patients undergoing surgery within a Northern Italian Cancer Registry. Outcomes including complications, re-surgeries, 30-day readmission, mortality, and LOS were assessed in 2023, the year of ERAS protocol adoption, and compared with data from 2022. A total of 158 surgeries were performed, 77 cases in 2022 and 81 in 2023. In 2023, a lower incidence of postoperative complications was observed compared to that in 2022 (17.3% vs. 22.1%), despite treating a higher proportion of patients with unfavorable prognoses. However, rates of reoperations and readmissions within 30 days post-surgery increased in 2023. Mortality within 30 days remained consistent between the two groups. Patients diagnosed in 2023 experienced a statistically significant reduction in LOS compared to those in 2022 (mean: 5 vs. 8.1 days). ERAS protocols in CRC surgery yield reduced postoperative complications and shorter hospital stays, even in complex cases. Our study emphasizes ERASâ role in enhancing surgical outcomes and recovery
Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease
Ulcerative colitis and Crohn's disease are chronic inflammatory intestinal diseases with perplexing heterogeneity in disease manifestation and response to treatment. While the molecular basis for this heterogeneity remains uncharacterized, single-cell technologies allow us to explore the transcriptional states within tissues at an unprecedented resolution which could further understanding of these complex diseases. Here, we apply single-cell RNA-sequencing to human inflamed intestine and show that the largest differences among patients are present within the myeloid compartment including macrophages and neutrophils. Using spatial transcriptomics in human tissue at single-cell resolution (CosMx Spatial Molecular Imaging) we spatially localize each of the macrophage and neutrophil subsets identified by single-cell RNA-sequencing and unravel further macrophage diversity based on their tissue localization. Finally, single-cell RNA-sequencing combined with single-cell spatial analysis reveals a strong communication network involving macrophages and inflammatory fibroblasts. Our data sheds light on the cellular complexity of these diseases and points towards the myeloid and stromal compartments as important cellular subsets for understanding patient-to-patient heterogeneity
Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease
Abstract Ulcerative colitis and Crohnâs disease are chronic inflammatory intestinal diseases with perplexing heterogeneity in disease manifestation and response to treatment. While the molecular basis for this heterogeneity remains uncharacterized, single-cell technologies allow us to explore the transcriptional states within tissues at an unprecedented resolution which could further understanding of these complex diseases. Here, we apply single-cell RNA-sequencing to human inflamed intestine and show that the largest differences among patients are present within the myeloid compartment including macrophages and neutrophils. Using spatial transcriptomics in human tissue at single-cell resolution (CosMx Spatial Molecular Imaging) we spatially localize each of the macrophage and neutrophil subsets identified by single-cell RNA-sequencing and unravel further macrophage diversity based on their tissue localization. Finally, single-cell RNA-sequencing combined with single-cell spatial analysis reveals a strong communication network involving macrophages and inflammatory fibroblasts. Our data sheds light on the cellular complexity of these diseases and points towards the myeloid and stromal compartments as important cellular subsets for understanding patient-to-patient heterogeneity
Incremental Fermi Large Area Telescope Fourth Source Catalog
We present an incremental version (4FGL-DR3, for Data Release 3) of the fourth Fermi-LAT catalog of gamma-ray sources. Based on the first twelve years of science data in the energy range from 50 MeV to 1 TeV, it contains 6658 sources. The analysis improves on that used for the 4FGL catalog over eight years of data: more sources are fit with curved spectra, we introduce a more robust spectral parameterization for pulsars, and we extend the spectral points to 1 TeV. The spectral parameters, spectral energy distributions, and associations are updated for all sources. Light curves are rebuilt for all sources with 1 yr intervals (not 2 month intervals). Among the 5064 original 4FGL sources, 16 were deleted, 112 are formally below the detection threshold over 12 yr (but are kept in the list), while 74 are newly associated, 10 have an improved association, and seven associations were withdrawn. Pulsars are split explicitly between young and millisecond pulsars. Pulsars and binaries newly detected in LAT sources, as well as more than 100 newly classified blazars, are reported. We add three extended sources and 1607 new point sources, mostly just above the detection threshold, among which eight are considered identified, and 699 have a plausible counterpart at other wavelengths. We discuss degree-scale residuals to the global sky model and clusters of soft unassociated point sources close to the Galactic plane, which are possibly related to limitations of the interstellar emission model and missing extended sources