13 research outputs found

    Noninvasive Prenatal Test Results Indicative of Maternal Malignancies:A Nationwide Genetic and Clinical Follow-Up Study

    Get PDF
    PURPOSE: Noninvasive prenatal testing (NIPT) for fetal aneuploidy screening using cell-free DNA derived from maternal plasma can incidentally raise suspicion for cancer. Diagnostic routing after malignancy suspicious-NIPT faces many challenges. Here, we detail malignancy suspicious-NIPT cases, and describe the clinical characteristics, chromosomal aberrations, and diagnostic routing of the patients with a confirmed malignancy. Clinical lessons can be learned from our experience. METHODS: Patients with NIPT results indicative of a malignancy referred for tumor screening between April 2017 and April 2020 were retrospectively included from a Dutch nationwide NIPT implementation study, TRIDENT-2. NIPT profiles from patients with confirmed malignancies were reviewed, and the pattern of chromosomal aberrations related to tumor type was analyzed. We evaluated the diagnostic contribution of clinical and genetic examinations. RESULTS: Malignancy suspicious-NIPT results were reported in 0.03% after genome-wide NIPT, and malignancies confirmed in 16 patients (16/48, 33.3%). Multiple chromosomal aberrations were seen in 23 of 48 patients with genome-wide NIPT, and a malignancy was confirmed in 16 patients (16/23, 69.6%). After targeted NIPT, 0.005% malignancy suspicious-NIPT results were reported, in 2/3 patients a malignancy was confirmed. Different tumor types and stages were diagnosed, predominantly hematologic malignancies (12/18). NIPT data showed recurrent gains and losses in primary mediastinal B-cell lymphomas and classic Hodgkin lymphomas. Magnetic resonance imaging and computed tomography were most informative in diagnosing the malignancy. CONCLUSION: In 231,896 pregnant women, a low percentage (0.02%) of NIPT results were assessed as indicative of a maternal malignancy. However, when multiple chromosomal aberrations were found, the risk of a confirmed malignancy was considerably high. Referral for extensive oncologic examination is recommended, and may be guided by tumor-specific hallmarks in the NIPT profile

    Clinical impact of additional findings detected by genome-wide non-invasive prenatal testing:Follow-up results of the TRIDENT-2 study

    Get PDF
    In the TRIDENT-2 study, all pregnant women in the Netherlands are offered genome-wide non-invasive prenatal testing (GW-NIPT) with a choice of receiving either full screening or screening solely for common trisomies. Previous data showed that GW-NIPT can reliably detect common trisomies in the general obstetric population and that this test can also detect other chromosomal abnormalities (additional findings). However, evidence regarding the clinical impact of screening for additional findings is lacking. Therefore, we present follow-up results of the TRIDENT-2 study to determine this clinical impact based on the laboratory and perinatal outcomes of cases with additional findings. Between April 2017 and April 2019, additional findings were detected in 402/110,739 pregnancies (0.36%). For 358 cases, the origin was proven to be either fetal (n = 79; 22.1%), (assumed) confined placental mosaicism (CPM) (n = 189; 52.8%), or maternal (n = 90; 25.1%). For the remaining 44 (10.9%), the origin of the aberration could not be determined. Most fetal chromosomal aberrations were pathogenic and associated with severe clinical phenotypes (61/79; 77.2%). For CPM cases, occurrence of pre-eclampsia (8.5% [16/189] vs 0.5% [754/159,924]; RR 18.5), and birth weigh

    NANS-CDG: Delineation of the Genetic, Biochemical, and Clinical Spectrum.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadBackground: NANS-CDG is a recently described congenital disorder of glycosylation caused by biallelic genetic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. Sialic acid at the end of glycoconjugates plays a key role in biological processes such as brain and skeletal development. Here, we present an observational cohort study to delineate the genetic, biochemical, and clinical phenotype and assess possible correlations. Methods: Medical and laboratory records were reviewed with retrospective extraction and analysis of genetic, biochemical, and clinical data (2016-2020). Results: Nine NANS-CDG patients (nine families, six countries) referred to the Radboudumc CDG Center of Expertise were included. Phenotyping confirmed the hallmark features including intellectual developmental disorder (IDD) (n = 9/9; 100%), facial dysmorphisms (n = 9/9; 100%), neurologic impairment (n = 9/9; 100%), short stature (n = 8/9; 89%), skeletal dysplasia (n = 8/9; 89%), and short limbs (n = 8/9; 89%). Newly identified features include ophthalmological abnormalities (n = 6/9; 67%), an abnormal septum pellucidum (n = 6/9; 67%), (progressive) cerebral atrophy and ventricular dilatation (n = 5/9; 56%), gastrointestinal dysfunction (n = 5/9; 56%), thrombocytopenia (n = 5/9; 56%), and hypo-low-density lipoprotein cholesterol (n = 4/9; 44%). Biochemically, elevated urinary excretion of N-acetylmannosamine (ManNAc) is pathognomonic, the concentrations of which show a significant correlation with clinical severity. Genotypically, eight novel NANS variants were identified. Three severely affected patients harbored identical compound heterozygous pathogenic variants, one of whom was initiated on experimental prenatal and postnatal treatment with oral sialic acid. This patient showed markedly better psychomotor development than the other two genotypically identical males. Conclusions: ManNAc screening should be considered in all patients with IDD, short stature with short limbs, facial dysmorphisms, neurologic impairment, and an abnormal septum pellucidum +/- congenital and neurodegenerative lesions on brain imaging, to establish a precise diagnosis and contribute to prognostication. Personalized management includes accurate genetic counseling and access to proper supports and tailored care for gastrointestinal symptoms, thrombocytopenia, and epilepsy, as well as rehabilitation services for cognitive and physical impairments. Motivated by the short-term positive effects of experimental treatment with oral sialic, we have initiated this intervention with protocolized follow-up of neurologic, systemic, and growth outcomes in four patients. Research is ongoing to unravel pathophysiology and identify novel therapeutic targets.European Reference Network for Rare Neurological Disease

    Genotype-phenotype correlations in L1 syndrome:a guide for genetic counselling and mutation analysis

    Get PDF
    Objectives To develop a comprehensive mutation analysis system with a high rate of detection, to develop a tool to predict the chance of detecting a mutation in the L1CAM gene, and to look for genotype-phenotype correlations in the X-linked recessive disorder, L1 syndrome.Methods DNA from 367 referred patients was analysed for mutations in the coding sequences of the gene. A subgroup of 100 patients was also investigated for mutations in regulatory sequences and for large duplications. Clinical data for 106 patients were collected and used for statistical analysis.Results 68 different mutations were detected in 73 patients. In patients with three or more clinical characteristics of L1 syndrome, the mutation detection rate was 66% compared with 16% in patients with fewer characteristics. The detection rate was 51% in families with more than one affected relative, and 18% in families with one affected male. A combination of these two factors resulted in an 85% detection rate (OR 10.4, 95% CI 3.6 to 30.1). The type of mutation affects the severity of L1 syndrome. Children with a truncating mutation were more likely to die before the age of 3 than those with a missense mutation (52% vs 8%; p=0.02).Conclusions We developed a comprehensive mutation detection system with a detection rate of almost 20% in unselected patients and up to 85% in a selected group. Using the patients' clinical characteristics and family history, clinicians can accurately predict the chance of finding a mutation. A genotype-phenotype correlation was confirmed. The occurrence of (maternal) germline mosaicism was proven.</p

    Implementing NIPT as part of a national prenatal screening program: The Dutch TRIDENT studies

    No full text
    Objectives: In most countries, non-invasive prenatal testing (NIPT) has been introduced commercially without any governmental guidance. In the Netherlands, prenatal screening for fetal anomaly is subject to a governmental license. NIPT has been implemented as part of the TRIDENT studies (Trial by Dutch laboratories for Evaluation of NIPT). TRIDENT-2 aims at offering NIPT to all pregnant women (∼174,000 women/year) within the national prenatal screening program. Since April 2017, women can choose NIPT as a contingent test after first-trimester combined testing (FCT), but may also choose NIPT as first-tier screening test. TheTRIDENT studies evaluate implementation and women's perspectives. Methods: All pregnant women in the Netherlands are offered prenatal screening and are counselled by certified counselors, generally midwives. A first-tier NIPT costs women € 175, comparable to the costs of FCT (∼€ 168). NIPT is performed by three Dutch university clinical genetic laboratories using an in-house validated test. Women can choose to have analysis of chromosomes 21, 18, and 13 without or with a report of incidental findings (findings other than trisomy 21, 13, 18) on the remaining autosomes, respectively, using the 'targeted' or 'whole genome' WISECONDOR pipeline. Sex chromosomes are not analyzed. Results: After 8 months of study, 48,234 tests have been performed (nationwide uptake of prenatal screening by NIPT as first-tier test was 40%), and 98.3% reports successfully issued. Failure rate was less than 2%. Mean turnaround time was 7 working days. 80% of women chose to have all autosomes analyzed. A total of 152 cases of T21 (0.3%), 32 cases of T18 (0.1%), 41 cases of T13 (0.1%), and 158 (0.3%) other chromosomal aberrations were found. First year results (and available follow-up) will be presented at the meeting. Conclusions: The Netherlands are the first country where NIPT is incorporated as a first-line test into a governmentally supported and health care funded prenatal aneuploidy screening program. The incorporation of the test in a university hospital laboratory and clinical service guarantees appropriate counselling and allows for proper follow-up. This 3-year study aims to provide all necessary information for a successful introduction of NIPT within the Dutch National prenatal screening program

    Clinical impact of additional findings detected by genome-wide non-invasive prenatal testing: Follow-up results of the TRIDENT-2 study

    No full text
    In the TRIDENT-2 study, all pregnant women in the Netherlands are offered genome-wide non-invasive prenatal testing (GW-NIPT) with a choice of receiving either full screening or screening solely for common trisomies. Previous data showed that GW-NIPT can reliably detect common trisomies in the general obstetric population and that this test can also detect other chromosomal abnormalities (additional findings). However, evidence regarding the clinical impact of screening for additional findings is lacking. Therefore, we present follow-up results of the TRIDENT-2 study to determine this clinical impact based on the laboratory and perinatal outcomes of cases with additional findings. Between April 2017 and April 2019, additional findings were detected in 402/110,739 pregnancies (0.36%). For 358 cases, the origin was proven to be either fetal (n = 79; 22.1%), (assumed) confined placental mosaicism (CPM) (n = 189; 52.8%), or maternal (n = 90; 25.1%). For the remaining 44 (10.9%), the origin of the aberration could not be determined. Most fetal chromosomal aberrations were pathogenic and associated with severe clinical phenotypes (61/79; 77.2%). For CPM cases, occurrence of pre-eclampsia (8.5% [16/189] vs 0.5% [754/159,924]; RR 18.5), and birth weight <2.3rd percentile (13.6% [24/177] vs 2.5% [3,892/155,491]; RR 5.5) were significantly increased compared to the general obstetric population. Of the 90 maternal findings, 12 (13.3%) were malignancies and 32 (35.6%) (mosaic) pathogenic copy number variants, mostly associated with mild or no clinical phenotypes. Data from this large cohort study provide crucial information for deciding if and how to implement GW-NIPT in screening programs. Additionally, these data can inform the challenging interpretation, counseling, and follow-up of additional findings
    corecore