11 research outputs found

    B Cells as a Therapeutic Target in Paediatric Rheumatic Disease

    Get PDF
    B cells carry out a central role in the pathogenesis of autoimmune disease. In addition to the production of autoantibodies, B cells can contribute to disease development by presenting autoantigens to autoreactive T cells and by secreting pro-inflammatory cytokines and chemokines which leads to the amplification of the inflammatory response. Targeting both the antibody-dependent and antibody-independent function of B cells in adult rheumatic disease has led to the advent of B cell targeted therapies in clinical practice. To date, whether B cell depletion could also be utilized for the treatment of pediatric disease is relatively under explored. In this review, we will discuss the role of B cells in the pathogenesis of the pediatric rheumatic diseases Juvenile Idiopathic Arthritis (JIA), Juvenile Systemic Lupus Erythematosus (JSLE) and Juvenile Dermatomyositis (JDM). We will also explore the rationale behind the use of B cell-targeted therapies in pediatric rheumatic disease by highlighting new case studies that points to their efficacy in JIA, JSLE, and JDM

    Investigating novel pathways in B cell mediated autoimmunity in the context of the disease juvenile dermatomyositis

    Get PDF
    The Inflammatory Idiopathic Myopathies (IIM) are a rare group of myopathic autoimmune diseases diagnosed in both adults and children. Patients present with proximal muscle weakness and Gottron’s papules. Immunohistochemical analysis of muscle tissue from these patients has identified immune cell infiltrate and the expression of pro-inflammatory cytokines however, little is known about the peripheral immunological profile in juvenile and adult patient groups. There are three aims: Firstly, to investigate mechanisms driving B cell lymphocytosis and define pathological features of B cells in the blood of Juvenile Dermatomyositis (JDM) patients. Secondly, to identify specific immune cell signatures and cytokine profiles for myositis disease subtypes and correlate this data with measurements of disease activity. Finally, to delineate a correlation between the up-regulated type I interferon signature and dysfunction of cholesterol homeostasis in immune cells. Using a combination of cell culture, flow cytometry, RNA-seq, q-PCR and ELISA techniques this study has assessed the immune cell signature, B cell biology and IFN related mechanisms in patients with IIM. The results identified that JDM patients with active disease have a significantly expanded immature B cell population which was correlated with a type I IFN signature. Activation through TLR7 and IFN- may drive the expansion of immature B cells in JDM and skew the cells towards a more pro-inflammatory phenotype. There are unique immune signatures in adult disease sub-types, one example was an expanded Th17 population seen in adult dermatomyositis (ADM). Lastly, IFN- stimulation of T and B cells does change the expression of some genes that are part of the Hallmark cholesterol homeostasis pathway. In conclusion, the work undertaken during my thesis provides further evidence that anti- IFN biologics could be efficacious in the treatment of JDM. Also, the need for further investigation for the use of IL-17A inhibitors in the treatment of IIM

    The Role of Immunometabolism in the Pathogenesis of Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder in which pathogenic abnormalities within both the innate and adaptive immune response have been described. In order to activated, proliferate and maintain this immunological response a drastic upregulation in energy metabolism is required. Recently, a greater understanding of these changes in cellular bioenergetics have provided new insight into the links between immune response and the pathogenesis of a number of diseases, ranging from cancer to diabetes and multiple sclerosis. In this review, we highlight the latest understanding of the role of immunometabolism in SLE with particular focus on the role of abnormal mitochondrial function, lipid metabolism, and mTOR signaling in the immunological phenomenon observed in the SLE. We also consider what implications this has for future therapeutic options in the management of the disease in future

    Juvenile dermatomyositis. Where are we now?

    Get PDF
    Juvenile onset idiopathic inflammatory myopathy (IIM) has many similarities and distinct differences from adult-onset disease. This review will focus on recent developments in understanding and treatment of juvenile dermatomyositis (JDM), the most common disease sub-type of IIM in childhood. JDM is a systemic immune mediated vasculopathy, increasingly recognised as a group of distinct phenotypes with variable presentation and outlook. This overview will describe long-term outlook and disease course including health-related quality of life and emerging treatments

    Role of CD14+ monocyte-derived oxidised mitochondrial DNA in the inflammatory interferon type 1 signature in juvenile dermatomyositis

    Get PDF
    OBJECTIVES: To define the host mechanisms contributing to the pathological interferon (IFN) type 1 signature in Juvenile dermatomyositis (JDM). METHODS: RNA-sequencing was performed on CD4+, CD8+, CD14+ and CD19+ cells sorted from pretreatment and on-treatment JDM (pretreatment n=10, on-treatment n=11) and age/sex-matched child healthy-control (CHC n=4) peripheral blood mononuclear cell (PBMC). Mitochondrial morphology and superoxide were assessed by fluorescence microscopy, cellular metabolism by 13C glucose uptake assays, and oxidised mitochondrial DNA (oxmtDNA) content by dot-blot. Healthy-control PBMC and JDM pretreatment PBMC were cultured with IFN-α, oxmtDNA, cGAS-inhibitor, TLR-9 antagonist and/or n-acetyl cysteine (NAC). IFN-stimulated gene (ISGs) expression was measured by qPCR. Total numbers of patient and controls for functional experiments, JDM n=82, total CHC n=35. RESULTS: Dysregulated mitochondrial-associated gene expression correlated with increased ISG expression in JDM CD14+ monocytes. Altered mitochondrial-associated gene expression was paralleled by altered mitochondrial biology, including 'megamitochondria', cellular metabolism and a decrease in gene expression of superoxide dismutase (SOD)1. This was associated with enhanced production of oxidised mitochondrial (oxmt)DNA. OxmtDNA induced ISG expression in healthy PBMC, which was blocked by targeting oxidative stress and intracellular nucleic acid sensing pathways. Complementary experiments showed that, under in vitro experimental conditions, targeting these pathways via the antioxidant drug NAC, TLR9 antagonist and to a lesser extent cGAS-inhibitor, suppressed ISG expression in pretreatment JDM PBMC. CONCLUSIONS: These results describe a novel pathway where altered mitochondrial biology in JDM CD14+ monocytes lead to oxmtDNA production and stimulates ISG expression. Targeting this pathway has therapeutical potential in JDM and other IFN type 1-driven autoimmune diseases

    Juvenile idiopathic inflammatory myositis: an update on pathophysiology and clinical care

    No full text
    The childhood-onset or juvenile idiopathic inflammatory myopathies (JIIMs) are a heterogenous group of rare and serious autoimmune diseases of children and young people that predominantly affect the muscles and skin but can also involve other organs, including the lungs, gut, joints, heart and central nervous system. Different myositis-specific autoantibodies have been identified that are associated with different muscle biopsy features, as well as with different clinical characteristics, prognoses and treatment responses. Thus, myositis-specific autoantibodies can be used to subset JIIMs into sub-phenotypes; some of these sub-phenotypes parallel disease seen in adults, whereas others are distinct from adult-onset idiopathic inflammatory myopathies. Although treatments and management have much improved over the past decade, evidence is still lacking for many of the current treatments and few validated prognostic biomarkers are available with which to predict response to treatment, comorbidities (such as calcinosis) or outcome. Emerging data on the pathogenesis of the JIIMs are leading to proposals for new trials and tools for monitoring disease

    Association with HLA-DRβ1 position 37 distinguishes juvenile Dermatomyositis from adult-onset myositis

    Get PDF
    OBJECTIVES: Juvenile dermatomyositis (JDM) is a rare, severe autoimmune disease and the most common idiopathic inflammatory myopathy (IIM) of children. JDM and adult-onset dermatomyositis (DM) have similar clinical, biological and serological features, although these features differ in prevalence between childhood-onset and adult-onset disease, suggesting age of disease onset may influence pathogenesis. Therefore, a JDM-focused genetic analysis was performed using the largest collection of JDM samples to date. METHODS: Caucasian JDM samples (n = 952) obtained via international collaboration were genotyped using the Illumina HumanCoreExome chip. Additional non-assayed HLA loci and genome-wide SNPs were imputed. RESULTS: HLA-DRB1*03:01 was confirmed as the classical HLA allele most strongly associated with JDM (OR 1.66; 95% CI 1.46, 1.89; P = 1.4 × 10-14), with an independent association at HLA-C*02:02 (OR = 1.74; 95% CI 1.42, 2.13, P = 7.13 × 10-8). Analyses of amino acid positions within HLA-DRB1 indicated the strongest association was at position 37 (omnibus P = 3.3 × 10-19), with suggestive evidence this association was independent of position 74 (omnibus P = 5.1 × 10-5), the position most strongly associated with adult-onset DM. Conditional analyses also suggested the association at position 37 of HLA-DRB1 was independent of some alleles of the Caucasian HLA 8.1 ancestral haplotype (AH8.1) such as HLA-DQB1*02:01 (OR = 1.62; 95% CI 1.36, 1.93; P = 8.70 × 10-8), but not HLA-DRB1*03:01 (OR = 1.49; 95% CR 1.24, 1.80; P = 2.24 × 10-5). No associations outside the HLA region were identified. CONCLUSIONS: Our findings confirm previous associations with AH8.1 and HLA-DRB1*03:01, HLA-C*02:02 and identify a novel association with amino acid position 37 within HLA-DRB1 which may distinguish JDM from adult DM

    table_1_CD19+CD24hiCD38hi B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-α.PDF

    No full text
    <p>Juvenile dermatomyositis (JDM) is a rare form of childhood autoimmune myositis that presents with proximal muscle weakness and skin rash. B cells are strongly implicated in the pathogenesis of the disease, but the underlying mechanisms are unknown. Therefore, the main objective of our study was to investigate mechanisms driving B cell lymphocytosis and define pathological features of B cells in JDM patients. Patients were recruited through the UK JDM Cohort and Biomarker study. Peripheral blood B cell subpopulations were immunophenotyped by flow cytometry. The results identified that immature transitional B cells were significantly expanded in active JDM, actively dividing, and correlated positively with disease activity. Protein and RNAseq analysis revealed high interferon alpha (IFNα) and TLR7-pathway signatures pre-treatment. Stimulation of B cells through TLR7/8 promoted both IL-10 and IL-6 production in controls but failed to induce IL-10 in JDM patient cells. Interrogation of the CD40–CD40L pathway (known to induce B cell IL-10 and IL-6) revealed similar expression of IL-10 and IL-6 in B cells cultured with CD40L from both JDM patients and controls. In conclusion, JDM patients with active disease have a significantly expanded immature transitional B cell population which correlated with the type I IFN signature. Activation through TLR7 and IFNα may drive the expansion of immature transitional B cells in JDM and skew the cells toward a pro-inflammatory phenotype.</p
    corecore