23 research outputs found

    Photoluminescence of spray pyrolysis deposited ZnO nanorods

    Get PDF
    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods

    Influence of Post-UV/Ozone Treatment of Ultrasonic-Sprayed Zirconium Oxide Dielectric Films for a Low-Temperature Oxide Thin Film Transistor

    Get PDF
    UID/CTM/50025/2019 PTDC/CTM-NAN/5172/2014 PTDC/NAN-MAT/32558/2017 project IUT194 ERC-StG-2014 GA 640598Solution-processed metal oxides require a great deal of thermal budget in order to achieve the desired film properties. Here, we show that the deposition temperature of sprayed zirconium oxide (ZrOx) thin film can be lowered by exposing the film surface to an ultraviolet (UV) ozone treatment at room temperature. Atomic force microscopy reveals a smooth and uniform film with the root mean square roughness reduced from ~ 0.63 nm (UVO-O) to ~ 0.28 nm (UVO-120) in the UV–ozone treated ZrOx films. X-ray photoelectron spectroscopy analysis indicates the formation of a Zr–O network on the surface film, and oxygen vacancy is reduced in the ZrOx lattice by increasing the UV–ozone treatment time. The leakage current density in Al/ZrOx/p-Si structure was reduced by three orders of magnitude by increasing the UV-ozone exposure time, while the capacitance was in the range 290–266 nF/cm2, corresponding to a relative permittivity (k) in the range 5.8–6.6 at 1 kHz. An indium gallium zinc oxide (IGZO)-based thin film transistor, employing a UV-treated ZrOx gate dielectric deposited at 200 °C, exhibits negligible hysteresis, an Ion/Ioff ratio of 104, a saturation mobility of 8.4 cm2 V−1S−1, a subthreshold slope of 0.21 V.dec−1, and a Von of 0.02 V. These results demonstrate the potentiality of low-temperature sprayed amorphous ZrOx to be applied as a dielectric in flexible and low-power-consumption oxide electronics.publishersversionpublishe

    Application of ultrasonic sprayed zirconium oxide dielectric in zinc tin oxide-based thin film transistor

    Get PDF
    project IUT194 UID/CTM/50025/2019 project TK141 Grant Agreement 17161 SFRH/BD/116047/2016Solution processing of metal oxides has been the focal point of interest for many researchers mainly because of the cost effectiveness and improved properties of metal oxides. However, achieving uniform and high-quality film deposition has been a recurring challenge using various wet-chemical techniques. Herein, we report a fully solution-based fabrication process exploiting both the ultrasonic spray pyrolysis (USP) and spin coating techniques owing to their simplicity, high degree of freedom for mixing metal oxide precursor salt, and larger area deposition. An amorphous zirconium oxide (ZrOx) dielectric and zinc tin oxide (ZTO) semiconductor were deposited, respectively. The dielectric characteristics of the ZrOx thin films were accessed by fabricating MIS-devices for the samples deposited at 200 °C and 400 °C, which exhibited a capacitance of 0.35 and 0.67 μF cm−2 at 100 kHz and relative permittivity of 8.5 and 22.7, respectively. The ZrOx thin film was then integrated as the gate dielectric layer in ZTO solution-processed thin film transistors, exhibiting a high electrical performance with low hysteresis (−0.18 V), high on/off current ratio of 106 orders of magnitude, saturation mobility of 4.6 cm2 V s−1, subthreshold slope of 0.25 V dec−1, and operating at a low voltage window of 3 V. Based on these results, the as-fabricated ZTO/ZrOx TFT opens the potential application of solution-processed transistors for low-cost electronic devices.publishersversionpublishe

    A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning

    Get PDF
    Owing to its high conductivity, graphene has been incorporated into polymeric nanofibers to create advanced materials for flexible electronics, sensors and tissue engineering. Typically, these graphene-based nanofibers are prepared by electrospinning synthetic polymers, whereas electrospun graphene-biopolymer nanofibers have been rarely reported due to poor compatibility of graphene with biopolymers. Herein, we report a new method for the preparation of graphene-biopolymer nanofibers using the judicious combination of an ionic liquid and electrospinning. Cellulose acetate (CA) has been used as the biopolymer, graphene oxide (GO) nanoparticles as the source of graphene and 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as the ionic liquid (IL) to create CA-[BMIM]Cl-GO nanofibers by electrospinning for the first time. Moreover, we developed a new route to convert CA-[BMIM]Cl-GO nanofibers to reduced GO nanofibers using hydrazine vapor under ambient conditions to enhance the conductivity of the hybrid nanofibers. The graphene sheets were shown to be uniformly incorporated in the hybrid nanofibers and only 0.43 wt% of GO increase the conductivity of CA-[BMIM]Cl nanofibers by more than four orders of magnitude (from 2.71× 10−7 S/cm to 5.30 × 10−3 S/cm). This ultra-high enhancement opens up a new route for conductive enhancement of biopolymer nanofibers to be used in smart (bio) electronic devices

    ZnO Nanorods via Spray Deposition of Solutions Containing Zinc Chloride and Thiocarbamide

    Get PDF
    In this work we present the results on formation of ZnO nanorods prepared by spray of aqueous solutions containing ZnCl2and thiocarbamide (tu) at different molar ratios. It has been observed that addition of thiocarbamide into the spray solution has great impact on the size, shape and phase composition of the ZnO crystals. Obtained layers were characterized by scanning electron microscopy (SEM) equipped with energy selected backscattered electron detection system (ESB), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL). Small addition of thiocarbamide into ZnCl2solution (ZnCl2:tu = 1:0.25) supports development of significantly thinner ZnO nanorods with higher aspect ratio compared to those obtained from ZnCl2solution. Diameter of ZnO rods decreases from 270 to 100 nm and aspect ratio increases from ∼2.5 to 12 spraying ZnCl2and ZnCl2:tu solutions, respectively. According to XRD, well crystallized (002) orientated pure wurtzite ZnO crystals have been formed. However, tiny ‘spot’—like formations of ZnS were detected on the side planes of hexagonal rods prepared from the thiocarbamide containing solutions. Being adsorbed on the side facets of the crystals ZnS inhibits width growth and promotes longitudinalc-axis growth

    Spray-Pyrolysis Synthesised TiO<sub>2</sub> Thin Films for Photocatalytic Air Treatment from Volatile Organic Compounds

    No full text
    A wide range of mixtures of volatile organic compounds (VOCs), which are present in indoor air in low concentrations, can strongly affect human health [...

    Effect of Solution Spray Rate on the Properties of Chemically Sprayed ZnO:In Thin Films

    No full text
    ZnO:In thin films were grown from 100 mL of spray solution on glass substrates by chemical spray at Ts=400°C using solution spray rates of 0.5–6.7 mL/min. Zinc acetate and indium(III)chloride were used as Zn and In sources, respectively, with [In]/[Zn] = 3 at.%. Independent of solution spray rate, the crystallites in ZnO:In films grow preferentially in the (101) plane parallel to the substrate. The solution spray rate influences the surface morphology, grain size, film thickness, and electrical and optical properties. According to SEM and AFM studies, sharp-edged pyramidal grains and canvas-resembling surfaces are characteristic of films grown at spray rates of 0.5 and 3.3 mL/min, respectively. To obtain films with comparable film thickness and grain size, more spray solution should be used at low spray rates. The electrical resistivity of sprayed ZnO:In films is controlled by the solution spray rate. The carrier concentration increases from 2·1019 cm−3 to 1·1020 cm−3 when spray rate is increased from 0.5 mL/min to 3.3 mL/min independent of the film thickness; the carrier mobilities are always lower in slowly grown films. Sprayed ZnO:In films transmit 75–80% of the visible light while the increase in solution spray rate from 0.5 mL/min to 3.3 mL/min decreases the transmittance in the NIR region and increases the band gap in accordance with the increase in carrier concentration. Lower carrier concentration in slowly sprayed films is likely due to the indium oxidation
    corecore