40 research outputs found

    Cryptic degassing and protracted greenhouse climates after flood basalt events

    Get PDF
    Large igneous provinces erupt highly reactive, predominantly basaltic lavas onto Earth’s surface, which should boost the weathering flux leading to long-term CO2 drawdown and cooling following cessation of volcanism. However, throughout Earth’s geological history, the aftermaths of multiple Phanerozoic large igneous provinces are marked by unexpectedly protracted climatic warming and delayed biotic recovery lasting millions of years beyond the most voluminous phases of extrusive volcanism. Here we conduct geodynamic modelling of mantle melting and thermomechanical modelling of magma transport to show that rheologic feedbacks in the crust can throttle eruption rates despite continued melt generation and CO2 supply. Our results demonstrate how the mantle-derived flux of CO2 to the atmosphere during large igneous provinces can decouple from rates of surface volcanism, representing an important flux driving long-term climate. Climate–biogeochemical modelling spanning intervals with temporally calibrated palaeoclimate data further shows how accounting for this non-eruptive cryptic CO2 can help reconcile the life cycle of large igneous provinces with climate disruption and recovery during the Permian–Triassic, Mid-Miocene and other critical moments in Earth’s climate history. These findings underscore the key role that outgassing from intrusive magmas plays in modulating our planet’s surface environment

    Dynamic redox and nutrient cycling response to climate forcing in the Mesoproterozoic ocean

    Get PDF
    Controls on Mesoproterozoic ocean redox heterogeneity, and links to nutrient cycling and oxygenation feedbacks, remain poorly resolved. Here, we report ocean redox and phosphorus cycling across two high-resolution sections from the ~1.4 Ga Xiamaling Formation, North China Craton. In the lower section, fluctuations in trade wind intensity regulated the spatial extent of a ferruginous oxygen minimum zone, promoting phosphorus drawdown and persistent oligotrophic conditions. In the upper section, high but variable continental chemical weathering rates led to periodic fluctuations between highly and weakly euxinic conditions, promoting phosphorus recycling and persistent eutrophication. Biogeochemical modeling demonstrates how changes in geographical location relative to global atmospheric circulation cells could have driven these temporal changes in regional ocean biogeochemistry. Our approach suggests that much of the ocean redox heterogeneity apparent in the Mesoproterozoic record can be explained by climate forcing at individual locations, rather than specific events or step-changes in global oceanic redox conditions

    A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution

    Get PDF
    Understanding the long-term evolution of Earth's plate–mantle system is reliant on absolute plate motion models in a mantle reference frame, but such models are both difficult to construct and controversial. We present a tectonic-rules-based optimization approach to construct a plate motion model in a mantle reference frame covering the last billion years and use it as a constraint for mantle flow models. Our plate motion model results in net lithospheric rotation consistently below 0.25∘ Myr−1, in agreement with mantle flow models, while trench motions are confined to a relatively narrow range of −2 to +2 cm yr−1 since 320 Ma, during Pangea stability and dispersal. In contrast, the period from 600 to 320 Ma, nicknamed the “zippy tricentenary” here, displays twice the trench motion scatter compared to more recent times, reflecting a predominance of short and highly mobile subduction zones. Our model supports an orthoversion evolution from Rodinia to Pangea with Pangea offset approximately 90∘ eastwards relative to Rodinia – this is the opposite sense of motion compared to a previous orthoversion hypothesis based on paleomagnetic data. In our coupled plate–mantle model a broad network of basal mantle ridges forms between 1000 and 600 Ma, reflecting widely distributed subduction zones. Between 600 and 500 Ma a short-lived degree-2 basal mantle structure forms in response to a band of subduction zones confined to low latitudes, generating extensive antipodal lower mantle upwellings centred at the poles. Subsequently, the northern basal structure migrates southward and evolves into a Pacific-centred upwelling, while the southern structure is dissected by subducting slabs, disintegrating into a network of ridges between 500 and 400 Ma. From 400 to 200 Ma, a stable Pacific-centred degree-1 convective planform emerges. It lacks an antipodal counterpart due to the closure of the Iapetus and Rheic oceans between Laurussia and Gondwana as well as due to coeval subduction between Baltica and Laurentia and around Siberia, populating the mantle with slabs until 320 Ma when Pangea is assembled. A basal degree-2 structure forms subsequent to Pangea breakup, after the influence of previously subducted slabs in the African hemisphere on the lowermost mantle structure has faded away. This succession of mantle states is distinct from previously proposed mantle convection models. We show that the history of plume-related volcanism is consistent with deep plumes associated with evolving basal mantle structures. This Solid Earth Evolution Model for the last 1000 million years (SEEM1000) forms the foundation for a multitude of spatio-temporal data analysis approaches

    Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon

    Get PDF
    Databases of 3D paleoclimate model simulations are increasingly used within global biogeochemical models for the Phanerozoic Eon. This improves the accuracy of the surface processes within the biogeochemical models, but the approach is limited by the availability of large numbers of paleoclimate simulations at different pCO2 levels and for different continental configurations. In this paper we apply the Frame Interpolation for Large Motion (FILM) deep learning method to a set of Phanerozoic paleoclimate model simulations to upscale their time resolution from one model run every ∼25 million years to one model run every 1 million years (Myr). Testing the method on a 5 Myr time-resolution set of continental configurations and paleoclimates confirms the accuracy of our approach when reconstructing intermediate frames from configurations separated by up to 40 Myr. We then apply the method to upscale the paleoclimate data structure in the SCION climate-biogeochemical model. The interpolated surface temperature and runoff are reasonable and present a logical progression between the original key frames. When updated to use the high-time-resolution climate data structure, the SCION model predicts climate shifts that were not present in the original model outputs due to its previous use of widely spaced datasets and simple linear interpolation. We conclude that a time resolution of ∼10 Myr in Phanerozoic paleoclimate simulations is likely sufficient for investigating the long-term carbon cycle and that deep learning methods may be critical in attaining this time resolution at reasonable computational expense, as well as for developing new fully continuous methods in which 3D continental processes are able to translate over a moving continental surface in deep time. However, the efficacy of deep learning methods in interpolating runoff data, compared to that of paleogeography and temperature, is diminished by the heterogeneous distribution of runoff. Consequently, interpolated climates must be confirmed by running a paleoclimate model if scientific conclusions are to be based directly on them.</p

    Rift and plate boundary evolution across two supercontinent cycles

    No full text
    The extent of continental rifts and subduction zones through deep geological time provides insights into the mechanisms behind supercontinent cycles and the long term evolution of the mantle. However, previous compilations have stopped short of mapping the locations of rifts and subduction zones continuously since the Neoproterozoic and within a self-consistent plate kinematic framework. Using recently published plate models with continuously closing boundaries for the Neoproterozoic and Phanerozoic, we estimate how rift and peri-continental subduction length vary from 1 Ga to present and test hypotheses pertaining to the supercontinent cycle and supercontinent breakup. We extract measures of continental perimeter-to-area ratio as a proxy for the existence of a supercontinent, where during times of supercontinent existence the perimeter-to-area ratio should be low, and during assembly and dispersal it should be high. The amalgamation of Gondwana is clearly represented by changes in the length of peri-continental subduction and the breakup of Rodinia and Pangea by changes in rift lengths. The assembly of Pangea is not clearly defined using plate boundary lengths, likely because its formation resulted from the collision of only two large continents. Instead the assembly of Gondwana (ca. 520 Ma) marks the most prominent change in arc length and perimeter-to-area ratio during the last billion years suggesting that Gondwana during the Early Palaeozoic could explicitly be considered part of a Phanerozoic supercontinent. Consequently, the traditional understanding of the supercontinent cycle, in terms of supercontinent existence for short periods of time before dispersal and re-accretion, may be inadequate to fully describe the cycle. Instead, either a two-stage supercontinent cycle could be a more appropriate concept, or alternatively the time period of 1 to 0 Ga has to be considered as being dominated by supercontinent existence, with brief periods of dispersal and amalgamation.Andrew S.Merdith, Simon E.Williams, Sascha Brune, Alan S.Collins, R. Dietmar Mülle

    Global Hydrogen Production During High‐Pressure Serpentinization of Subducting Slabs

    No full text
    Abstract Serpentinization is among the most important, and ubiquitous, geological processes in crustal–upper mantle conditions (<6 GPa, <600°C), altering the rheology of rocks and producing H2 that can sustain life. While observations are available to quantify serpentinization in terrestrial and mid‐ocean ridge environments, measurements within subduction zone environments are far more sparse. To overcome this difficulty, we design a methodology to quantify and offer a first‐order estimate of the magnitude of “slab‐serpentinization” that has occurred over the last 5 Ma within the world's subduction zones by coupling four discrete tectonic and geophysical datasets—(a) raster grids of relic abyssal peridotite (peridotite exhumed from slow spreading mid‐ocean ridges but unaffected by pre‐subduction serpentinization) within ocean basins, (b) slab geometry, (c) thermal profiles and a (d) plate‐tectonic model. Averaged per year, our results suggest that 4.2–24 • 107 kg of H2 per annum could be generated from “slab‐serpentinization” within a subduction zone. Our estimate is 3–4 orders of magnitude lower than what is thought to be produced at mid‐ocean ridges, and 1–2 orders of magnitude lower than what could occur through serpentinization at trench flexure and when including possible mantle wedge serpentinization. Higher hydrogen production is correlated most strongly with the spreading history of ocean basins, underlaying the importance of the tectonic history of a slab prior to subduction

    Duration of Sturtian "Snowball Earth" glaciation linked to exceptionally low mid-ocean ridge outgassing

    Get PDF
    The Sturtian “Snowball Earth” glaciation (ca. 717–661 Ma) is regarded as the most extreme interval of icehouse climate in Earth’s history. The exact trigger and sustention mechanisms for this long-lived global glaciation remain obscure. The most widely debated causes are silicate weathering of the ca. 718 Ma Franklin large igneous province (LIP) and changes in the length and degassing of continental arcs. A new generation of two independent Neoproterozoic full-plate tectonic models now allows us to quantify the role of tectonics in initiating and sustaining the Sturtian glaciation. We find that continental arc length remains relatively constant from 850 Ma until the end of the glaciation in both models and is unlikely to play a role. The two plate motion models diverge in their predictions of the timing and progression of Rodinia break-up, ocean-basin age, ocean-basement depth, sea-level evolution, and mid-ocean ridge (MOR) carbon outflux. One model predicts MOR outflux and ocean basin volume–driven sea level lower than during the Late Cenozoic glaciation, while the other predicts outgassing and sea level exceeding those of the Late Cretaceous hothouse climate. The second model would preclude a major glaciation, while the first model implies that the trigger for the Sturtian glaciation could have been a combination of an extremely low MOR outflux (∼9 Mt C/yr) and Franklin LIP weathering. Such minimal outflux could have maintained an icehouse state for 57 m.y. when silicate weathering was markedly reduced, with a gradual build-up of MOR CO2 in the atmosphere paired with terrestrial volcanism leading to its termination.Adriana Dutkiewicz, Andrew S. Merdith, Alan S. Collins, Ben Mather, Lauren Ilano, Sabin Zahirovic, and R. Dietmar Mülle
    corecore