1,396 research outputs found

    Barbero-Immirzi field in canonical formalism of pure gravity

    Full text link
    The Barbero-Immirzi (BI) parameter is promoted to a field and a canonical analysis is performed when it is coupled with a Nieh-Yan topological invariant. It is shown that, in the effective theory, the BI field is a canonical pseudoscalar minimally coupled with gravity. This framework is argued to be more natural than the one of the usual Holst action. Potential consequences in relation with inflation and the quantum theory are briefly discussed.Comment: 10 page

    Photopyroelectric Investigation of the trans–cis Isomerization Effect on the Nematic- Isotropic Phase Transition of a Liquid Crystalline Azobenzene

    Get PDF
    Photopyroelectric calorimetry has been applied to the study of the effects of different concentration of photo-induced cis isomeric molecules on the characteristics of the nematic – isotropic phase transition in p,p’-diheptylazobenzene (7AB) samples. The investigations could be carried out by monitoring the behavior of the thermal diffusivity over the phase transition before and during the sample irradiation with UV light of varying intensity. Among other, it is shown that the monitoring of the time dependence of the thermal diffusivity at fixed sample temperature enabled the comparative study of the dynamics of the trans–cis and cis–trans isomeric transitions. It was shown that the increasing cis isomers concentration caused an increase in the fraction of material undergoing the phase transitions and increased the cis–trans conversion rate. Finally, polarization microscopy observations of the sample texture, which could be carried out together with the calorimetric evaluations proved useful for a more comprehensive analysis of the obtained results

    Dystonia: sparse synapses for D2 receptors in striatum of a DYT1 knock-out mouse model

    Get PDF
    Dystonia pathophysiology has been partly linked to downregulation and dysfunction of dopamine D2 receptors in striatum. We aimed to investigate the possible morpho-structural correlates of D2 receptor downregulation in the striatum of a DYT1 Tor1a mouse model. Adult control Tor1a+/+ and mutant Tor1a+/− mice were used. The brains were perfused and free-floating sections of basal ganglia were incubated with polyclonal anti-D2 antibody, followed by secondary immune-fluorescent antibody. Confocal microscopy was used to detect immune-fluorescent signals. The same primary antibody was used to evaluate D2 receptor expression by western blot. The D2 receptor immune-fluorescence appeared circumscribed in small disks (~0.3–0.5 ÎŒm diameter), likely representing D2 synapse aggregates, densely distributed in the striatum of Tor1a+/+ mice. In the Tor1a+/− mice the D2 aggregates were significantly smaller (ÎŒm2 2.4 ± SE 0.16, compared to ÎŒm2 6.73 ± SE 3.41 in Tor1a+/+) and sparse, with ~30% less number per microscopic field, value correspondent to the amount of reduced D2 expression in western blotting analysis. In DYT1 mutant mice the sparse and small D2 synapses in the striatum may be insufficient to “gate” the amount of presynaptic dopamine release diffusing in peri-synaptic space, and this consequently may result in a timing and spatially larger nonselective sphere of influence of dopamine action

    Redox activity as a powerful strategy to tune magnetic and/or conducting properties in benzoquinone-based metal-organic frameworks

    Get PDF
    Multifunctional molecular materials have attracted material scientists for several years as they are promising materials for the future generation of electronic devices. Careful selection of their molecular building blocks allows for the combination and/or even interplay of different physical properties in the same crystal lattice. Incorporation of redox activity in these networks is one of the most appealing and recent synthetic strategies used to enhance magnetic and/or conducting and/or optical properties. Quinone derivatives are excellent redox-active linkers, widely used for various applications such as electrode materials, flow batteries, pseudo-capacitors, etc. Quinones undergo a reversible two-electron redox reaction to form hydroquinone dianions via intermediate semiquinone radical formation. Moreover, the possibility to functionalize the six-membered ring of the quinone by various substituents/functional groups make them excellent molecular building blocks for the construction of multifunctional tunable metal-organic frameworks (MOFs). An overview of the recent advances on benzoquinone-based MOFs, with a particular focus on key examples where magnetic and/or conducting properties are tuned/switched, even simultaneously, by playing with redox activity, is herein envisioned

    Metal-Organic Framework vs. Coordination Polymer-Influence of the Lanthanide on the Nature of the Heteroleptic Anilate/Terephtalate 3D Network

    Get PDF
    Metal-organic frameworks (MOFs), whose definition has been regularly debated, are a sub-class of coordination polymers (CPs) which may feature both an overall 3D architecture and some degree of porosity. In this context, MOFs based on lanthanides (Ln-MOFs) could find many applications due to the combination of sorption properties and magnetic/luminescent behaviors. Here we report rare examples of 3D Ln-CPs based on anilate linkers, obtained under solvothermal conditions using a heteroleptic strategy. The three compounds of formula [Yb-2(mu-ClCNAn)(2)(mu-F4BDC)(H2O)(4)]center dot(H2O)(3) (1), [Er-2(mu-ClCNAn)(2)(mu-F4BDC)(H2O)(4)]center dot(H2O)(4) (2) and [Eu-2(mu-ClCNAn)(2)(mu-F4BDC)(H2O)(6)] (3) have been characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and optical measurements. Structural characterization revealed that compounds 1 and 2 present an interesting MOF architecture with extended rectangular cavities which are only filled with water molecules. On the other hand, compound 3 shows a much more complex topology with no apparent cavities. We discuss here the origins of such differences and highlight the crucial role of the Ln(III) ion nature for the topology of the CP. Compounds 1 and 2 now offer a playground to investigate the possible synergy between gas/solvent sorption and magnetic/luminescent properties of Ln-MOFs

    Thermographic and reflectographic imaging investigations on Baroque paintings preserved at the Chigi Palace in Ariccia

    Get PDF
    In this work, two different mid-infrared imaging techniques operating in the 3-5 ÎŒm spectral range are applied to the study of three paintings on canvas, dating back to the XVII century, preserved at the Chigi Palace in Ariccia (Italy). A combined approach based on the use of pulsed thermography and mid-infrared reflectography is proposed for the analysis of the 'Primavera' by Filippo Lauri and Mario Nuzzi, the 'Ritratto di Mario Nuzzi che dipinge un vaso di fiori' by Giovanni Maria Morandi and Mario Nuzzi and the 'Ebbrezza di Noee' by Andrea Sacchi. The aim is to show how the integrated use of these techniques enables a depth-resolved investigation of the entire layered structure of the paintings, from the surface up to the canvas support. The complementarity of the presented results allows an evaluation of the conservative status of the support and the detection of graphical and pictorial features hidden beneath the surface layer, such as pentimenti, as these features are important for the historical and artistic characterisation of the artefact

    Generalized Chern-Simons Modified Gravity in First-Order Formalism

    Full text link
    We propose a generalization of Chern-Simons (CS) modified gravity in first-order formalism. CS modified gravity action has a term that comes from the chiral anomaly which is Pontryagin invariant. First-order CS modified gravity is a torsional theory and in a space-time with torsion the chiral anomaly includes a torsional topological term called Nieh-Yan invariant. We generalize the CS modified gravity by adding the Nieh-Yan term to the action and find the effective theory. We compare the generalized theory with the first-order CS modified gravity and comment on the similarities and differences.Comment: 8 pages, an author added, new paragraphs, comments and references added, published in Gen. Relativ. Gravi

    The establishment of the agricultural landscape of central Sicily between the Middle Neolithic and the beginning of the Iron Age

    Get PDF
    The possible co-variation of human occupation and vegetation from the Middle Neolithic to the beginning of the Iron Age (7.5–2.8 ka BP) in Central Sicily in the context of the central Mediterranean between Middle and Late Holocene are analysed in this paper to provide new insights on Sicilian prehistoric demography. The demographic and economic trends during these millennia were reconstructed using archaeological, Accelerator Mass Spectrometry 14C dates, palynological, archaeobotanical, and zooarchaeological data from the northern, central, and southern sectors of Central Sicily through a diachronic comparison with variation in Arboreal Pollen, Anthropogenic Pollen Indicators, Olea-Juglans-Castanea pollen, microcharcoals, and Sporormiella from four pollen cores from sites in different ecosystems. A very significant spread of farming activities was found at the end of the Neolithic, together with an apparent demographic gap during the Middle Copper Age, and the emergence of agricultural landscapes at the end of the Copper Age associated with a striking increase in population. A combination of cultural and climatic changes during the late phase of the Bronze Age resulted in a subsequent overall decrease in population
    • 

    corecore