25 research outputs found

    Bacterial expression of mutant argininosuccinate lyase reveals imperfect correlation of in - vitro enzyme activity with clinical phenotype in argininosuccinic aciduria

    Get PDF
    Background: The urea cycle defect argininosuccinate lyase (ASL) deficiency has a large spectrum of presentations from highly severe to asymptomatic. Enzyme activity assays in red blood cells or fibroblasts, although diagnostic of the deficiency, fail to discriminate between severe, mild or asymptomatic cases. Mutation/phenotype correlation studies are needed to characterize the effects of individual mutations on the activity of the enzyme. Methods: Bacterial in-vitro expression studies allowed the enzyme analysis of purified mutant ASL proteins p.I100T (c.299T > C), p.V178M (c.532G > A), p.E189G (c.566A > G), p.Q286R (c.857A > G), p.K315E (c.943A > G), p.R379C (c.1135C > T) and p.R385C (c.1153C > T) in comparison to the wildtype protein. Results: In the bacterial in-vitro expression system, ASL wild-type protein was successfully expressed. The known classical p.Q286R, the novel classical p.K315E and the known mutations p.I100T, p.E189G and p.R385C, which all have been linked to a mild phenotype, showed no significant residual activity. There was some enzyme activity detected with the p.V178M (5 % of wild-type) and p.R379C (10 % of wild-type) mutations in which Km values for argininosuccinic acid differed significantly from the wild-type ASL protein. Conclusion: The bacterially expressed enzymes proved that the mutations found in patients and studied here indeed are detrimental. However, as in the case of red cell ASL activity assays, some mutations found in genetically homozygous patients with mild presentations resulted in virtual loss of enzyme activity in the bacterial system, suggesting a more protective environment for the mutant enzyme in the liver than in the heterologous expression system and/or in the highly dilute assays utilized her

    Biochemical and clinical characteristics of creatine deficiency syndromes.

    No full text
    Creatine deficiency syndromes are a newly described group of inborn errors of creatine synthesis (arginine:glycine amidinotransferase (AGAT) deficiency and guanidinoacetate methyltransferase (GAMT) deficiency) and of creatine transport (creatine transporter (CRTR) deficiency). The common clinical feature of creatine deficiency syndromes is mental retardation and epilepsy suggesting main involvement of cerebral gray matter. The typical biochemical abnormality of creatine deficiency syndromes is cerebral creatine deficiency, which is demonstrated by in vivo proton magnetic resonance spectroscopy. Measurement of guanidinoacetate in body fluids may discriminate between the GAMT (high concentration), AGAT (low concentration) and CRTR (normal concentration) deficiencies. Further biochemical characteristics include changes in creatine and creatinine concentrations in body fluids. GAMT and AGAT deficiency are treatable by oral creatine supplementation, while patients with CRTR deficiency do not respond to this type of treatment. The creatine deficiency syndromes are underdiagnosed, so their possibility should be considered in all children affected by unexplained mental retardation, seizures and speech delay

    Novel Mutations in FA2H

    No full text
    Hereditary spastic paraplegias and related genetically heterogeneous disorders may be difficult to distinguish clinically. The FA2H gene has been associated with autosomal recessive neurodegenerative phenotypes encompassing spastic paraplegia with or without dystonia, and demyelinating leukodystrophy. To date, few individuals with mutations in the FA2H gene have been described. We report a 5-year-old girl of mixed Filipino and Vietnamese origin who presented with progressive lower limb spasticity and periventricular leukomalacia. The clinical diagnosis of FA2H-associated neurodegeneration was confirmed on the basis of 2 novel mutations in compound heterozygosity in the FA2H gene (p.S70L/p.P323L). This family highlights that FA2H-associated disorders may be underrecognized in children with neurodegeneration of many different ethnicities. Magnetic resonance imaging features play an important role as diagnostic clues in this and other hereditary spastic paraplegias. The consideration of this diagnosis is essential in providing families with important information on prognosis, as well as accurate genetic counseling.</p

    Lysine-restricted diet and mild cerebral serotonin deficiency in a patient with pyridoxine-dependent epilepsy caused by ALDH7A1 genetic defect

    No full text
    Pyridoxine dependent epilepsy (PDE) is caused by mutations in the ALDH7A1 gene (PDE-ALDH7A1) encoding α-aminoadipic-semialdehyde-dehydrogenase enzyme in the lysine catabolic pathway resulting in an accumulation of α-aminoadipic-acid-semialdehyde (α-AASA). We present the one-year treatment outcome of a patient on a lysine-restricted diet. Serial cerebral-spinal-fluid (CSF) α-AASA and CSF pipecolic-acid levels showed decreased levels but did not normalize. He had a normal neurodevelopmental outcome on a lysine-restricted diet. Despite normal CSF and plasma tryptophan levels and normal tryptophan intake, he developed mild CSF serotonin deficiency at one year of therapy. Stricter lysine restriction would be necessary to normalize CSF α-AASA levels, but might increase the risks associated with the diet. Patients are at risk of cerebral serotonin deficiency and should be monitored by CSF neurotransmitter measurements

    A Prospective Case Study of the Safety and Efficacy of Lysine-Restricted Diet and Arginine Supplementation Therapy in a Patient With Pyridoxine-Dependent Epilepsy Caused by Mutations in ALDH7A1

    No full text
    Background Pyridoxine-dependent epilepsy (PDE) is caused by mutations in ALDH7A1 (PDE- ALDH7A1), which encodes α-aminoadipic semialdehyde dehydrogenase in the lysine catabolic pathway, resulting in accumulation of α-aminoadipic-acid-semialdehyde. Patient Description and Results We present a three-year treatment outcome of a child with PDE- ALDH7A1 on pyridoxine (started at age three weeks of age), lysine-restricted diet (started at age seven months), and arginine supplementation therapy (started at age 26 months). He had a markedly elevated urinary α-aminoadipic-acid-semialdehyde (39.6 mmol/mol of creatinine; reference range = 0 to 2) and compound heterozygous mutations in ALDH7A1 (c.446C>A and c.919C>T). He has been seizure free since the age three weeks. He achieved normal cognitive function at age 3.5 years. He exhibited gross motor delay after the age 13 months. Tryptophan supplementation was added for the mild cerebral serotonin deficiency at the thirteenth month of therapy. Arginine supplementation was added to achieve further decrease in the cerebrospinal fluid α-aminoadipic-acid-semialdehyde levels at the 26th month of therapy. His cerebrospinal fluid α-aminoadipic-acid-semialdehyde levels were markedly decreased on this combined therapy. Conclusions This treatment was well tolerated. Mild cerebral serotonin deficiency was the only biochemical effect with no clinical features. Despite excellent compliance and strict treatment regimen, cerebrospinal fluid α-aminoadipic-acid-semialdehyde levels did not normalize
    corecore